Sem-3 CC7 Quantum Mechanics

Application of Schrodinger Equation to One Dimensional System

e We need to solve Schrodinger Equation for some simple one dimensional systems to
obtain the energy eigenvalues, eigenfunctions and their physical significance.

e The potential energy function V(x) will be different for different systems.

e Different systems will have different boundary conditions.

e The boundary conditions are imposed on the wavefunction.

e These are the predefined values of the wave function at the boundary of the system under
consideration.

1. Particle in an infinitely rigid box

Suppose a particle is moving inside an infinitely rigid box of length a in one dimension like the
following figure.

Py V=0
x=0 X=a

b N

Particle in a 1-D Box

The potential is infinite everywhere except for 0<x<a where it is zero. So,
V(x) =0 for 0<x<a
=oo elsewhere.

As the particle is confined within the 0<x<a, we need to solve Schrodinger equation in the region
0<x<a. The solution is zero outside the region. Time independent Schrodinger equation reads
h? d?y
2m dx?

=(E-VY
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Putting V=0

h? d?

Ry
2m dx?

d>p  2mE

dx?2 ~ h? v

d*y 2mE
or, 7 = —k*p ————(1) wherek? = 2

The general of the second order differential equation (1) is
Y =Asinkx + Bcoskx ————— — (2)

The constants A and b can be determined using proper boundary conditions. Note that the value
of the wave function must be zero at the endpoints of the box. So

)} y=0 at x=0
i) y=0 at x=a.

Putting the boundary condition (i) in equation (2), we get B=0. Then equation (ii) reduces to
Y = Asinkx — — — —(3)

Putting the boundary condition (ii) in equation (3), we get A sin ka = 0. The constant A cannot
be zero as it would make the wave function zero everywhere. So
sinka=0, or, ka=nm wheren=1.2,3,...

nm

The value n=0 is left out as it leads to y=0. Thus k = —.

2mE  n’m?
E, = nmh =123
n — Zmaz ) n= )y

These are the energy eigenvalues for different energy levels denoted by the value of n. Now the
wave function becomes

nmx
llJ(X) =A Sil’lT

The normalization condition requires
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a
fl/)z(x)dx =1
0
a
|A2|fsin2%dx =1
0

a
A*l==1
147

~
Il
SHE

Thus the stationary state wave functions for the particle in an infinitely rigid box is given by

(x) = 2 nnx — 123
YP.(x) = asm p n=123,..

Wave and Probability Solutions Energy Solutions
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2. One Dimensional Step Potential

Quantum Mechanics

Consider a particle of mass m and energy E moving along X axis acted upon by a constant

potential Vo at all points x>0. The potential is zero for all x<0. A step potential of this type is

given by

V(X) = Vo, x>0
=0, x<0

Two cases may arise: (1) E>V, (Classically no reflection is possible towards region 1) and (2)

E<V, (Classically no transmission is possible in region II)

AVAVAVE

Region-1

Region-11

Y

0
Step Potential

Case 1. E>V,

First Part: General solution of Schrodinger Equation

For region I, (x<0) where V(x)=0, the time independent Schrodinger equation is

d>y, 2mE

iz

d*,

= 0; T 1 oy
lpl or dxz

+a’P, =0— (1)

a? = ZhLZE (a real quantity) and )4 is the wave function in region I.
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The general solution to equation (1) is
P (x) = Ae'™* + Be % — (2)
The term Ae’™ represents the incident particles and Be~'** represents the reflected particles.

For region 11, (x>0) where V(x)=Vy, the time independent Schrodinger equation is

d*,  2m(E - V) d*;
FRaR 7 Y, = 0, or, 2t BXY, =0 — (3)
2 Zm(E—V(]) - - - - -
B = — (a real quantity) and v, is the wave function in region II.

The general solution to equation (3) is

Py (x) = Ce* — (4)

Since in region 11, the wave propagates to right only, there is no question of reflecting back and

thus e ~** term is absent.
Second Part: Applying Boundary Conditions

The three co-efficients A, B, C can be obtained by applying boundary conditions at x=0. The

boundary conditions are-
i) Wave function vy is continuous at x=0

(¥1)x=0 = (¥2)x=0

i) W s continuous at x=0.
dx

dy dy
(=0 = (- )e=0
Applying the boundary condition (i) at x=0 in equations (2) and (4) we get
A+B=C..(5

Applying the boundary condition (ii) at x=0 in equations (2) and (4) we get
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Solution:

Solving 5 and 6 we get,

Hence we have

Remember: A represents incident

particles, B represents reflected
particles, C represents transmitted

particles.

According to equation 10, C>A as
o>fB. So the amplitude of the
transmitted wave is greater than the
amplitude of incident wave. Nature of
the wave function is shown in the

following figure.

AN

Quantum Mechanics

_a-p
_a+[3""'(9)
2a 10
oy ... (10)
Energy |
E
V(X) = VO
V(x)=0
| ¢ I o
w(x)
X

Source: Internet
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Transmission co-efficient is defined as

_ Probability current density for transmitted wave
Probability current density for incident wave

St

Si

hB | 12
WICI

h_a|A|2
m

_Bler

alAl|?

B 2a

=E(a+,8
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_ Aap
~(@+p)?

Reflection co-efficient is defined as

Probability current density for reflected wave
~ Probability current density for incident wave

s,

s,
ha p2

— m
h_alAlz
m

a—p

a+ﬁ)2

= (
Thus, R+ T =1

This also shows there is a non-zero, finite probability of reflection at the step.
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2. One Dimensional Step Potential (Continued)

Case 2. E<V,

First Part: General solution of Schrodinger Equation
For region I, (x<0) where V(x)=0, the time independent Schrodinger equation is

d21p1 2mE dzlpl
Tz Pz =00n—F+ o’y =0—(1)

a’ = Z;”—ZE (a real quantity) and ), is the wave function in region I.

The general solution to equation (1) is
Y1 (x) = Ae'™* + Be ™% — (2)
The term Ae’® represents the incident particles and Be~'%* represents the reflected particles.

For region 11, (x>0) where V(x)=Vy, the time independent Schrodinger equation is

d21p2 2m(E — 1)) d21/)2
PR v A

p? = % and 1, is the wave function in region II. _

The general solution to equation (3) is

B*, =0-(3)

(%) = Ce ™ —(4)

In region I, Ce™#* is an exponentially decreasing function, which penetrates the potential
barrier for some finite distance in positive X direction. Def* term is an exponentially increasing
wave function. But according to physical interpretation of wave function, a wave function must

remain finite when x — oo. So d must be zero, hence this term is omitted.
Second Part: Applying Boundary Conditions

The three co-efficients A, B, C can be obtained by applying boundary conditions at x=0. The

boundary conditions are-

AN Physics@City College



Sem-3 CC7

i) Wave function y is continuous at x=0
(P1)x=0 = W2)x=0
i) Z—f is continuous at x=0.
diy, diy,
(G dx=0 = (=0

Applying the boundary condition (i) at x=0 in equations (2) and (4) we get
A+B=C..(5
Applying the boundary condition (ii) at x=0 in equations (2) and (4) we get

_ 1B
A=B=—C..(6)

Solution:

Solving 5 and 6 we get,

i
A= E(l +;’B> o (7)
C i
Hence we have
B a—-ip 9
A a+ip - )
C _ 2a 10
A_a+iﬁ""'( )
Reflection Co-efficient
o |BP
AP
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_la—ipl*
Cla+ipl2

Since T+R=1, T=0. The conclusions from the result are-

AN

i)

i)

i)

There is a finite probability of finding the particle in region Il represented by the
factor e #* in equation (4).

There is no absorption in region Il, 100% reflection at the boundary. The wave
penetrating a small distance into region Il is continuously reflected till all the incident
energy is reflected back to region 1.

According to classical mechanics a particle of energy E<V, can never penetrate into
region Il. But in quantum mechanics, there is a finite probability of finding the
particle at region Il within a short distance.

3 A
region (I) Y region (II)

E<V,

-
0 Source: Internet y-
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