T(3rd Sm.)-Mathematics-H/CC-6/CBCS

2020

MATHEMATICS — HONOURS

Paper : CC-6

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- Choose the correct alternative and justify your answer (1 mark for correct answer and 1 mark for justification). (1+1)×10=20
 - (a) The ring of matrices $S = \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ contains
 - (i) no divisors of zero with unity (ii) divisors of zero with unity
 - (iii) no divisors of zero without unity (iv) divisors of zero without unity.
 - (b) Which of the following ring is not an integral domain?
 - (i) $(\mathbb{Z}, +, \cdot)$ (ii) $(\mathbb{Z}_{6}, +, \cdot)$
 - (iii) $(\mathbb{Z}_{5},+,\cdot)$ (iv) $(\mathbb{Z}_{13},+,\cdot)$.

(c) Let R be a ring where $R = (\mathbb{Z}_8, +, \cdot)$. Then char (R) is

- (iii) 8 (iv) 4.
- (d) Let $S = \{a + b\omega : a, b \in \mathbb{R}\}$, where ω is an imaginary cube root of unity. Then

(i) S is a subring but not a subfield of \mathbb{C} (ii) S is a subfield of \mathbb{C}

- (iii) S is not a subring of \mathbb{C} (iv) None of these.
- (e) Let R be a ring with unity element e and let $\phi : R \to R'$ be a ring homomorphism. If $\phi(e) = 0$, where 0 is the zero element of the ring $R'(\neq R)$. Then ker ϕ is
 - (i) R (ii) R'
 - (iii) an empty set (iv) None of these.
- (f) Which one of the following ideals is not a prime ideal?
 - (i) $2 \mathbb{Z}$ in the ring \mathbb{Z} (ii) $4 \mathbb{Z}$ in the ring $2 \mathbb{Z}$
 - (iii) The ideal $\{0\}$ in \mathbb{Z} (iv) The ideal $\{0\}$ in \mathbb{R} .

Please Turn Over

(2)(g) The dimension of the vector space \mathbb{C} over \mathbb{R} is (i) infinite (ii) 1 (iii) 2 (iv) none of these. (h) Let V be a vector space of all 3×3 real matrices over the field \mathbb{R} . Then the dimension of the subspace W consisting of all symmetric matrices is (i) 4 (ii) 5 (iii) 6 (iv) 3. (i) Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be a Linear mapping. Then nullity of T+ rank of T is (ii) 2 (i) 1 (iii) 3 (iv) 4. (j) If λ is an eigenvalue of a real skew symmetric matrix, then $\left|\frac{1-\lambda}{1+\lambda}\right|$ is

> (i) 4 (ii) 1

> (iii) 3 (iv) 2.

Unit - I

2. Answer any five questions :

T(3rd Sm.)-Mathematics-H/CC-6/CBCS

- (a) (i) Show that in a commutative ring R with unity, if M is a maximal ideal of R, then the quotient ring R/M is a field.
 - (ii) Correct or justify : A maximal ideal in a commutative ring may not be a prime ideal. 3+2
- (b) State fundamental theorem of ring homomorphism. Let $R = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z} \right\}$ and $\varphi : R \to \mathbb{Z}$ be

defined by $\varphi \begin{pmatrix} a & b \\ b & a \end{pmatrix} = a - b$. Show that φ is a ring homomorphism and $\frac{R}{\ker \varphi}$ is isomorphic to \mathbb{Z} . 1+2+1+1

Examine whether ker φ is a prime ideal or maximal ideal.

(i) Show that the ideal $S = \{(m, n) \in \mathbb{Z} \times \mathbb{Z} : 5 | n\}$ of $Z \times Z$ is a maximal ideal. (c)

(ii) Find the maximal ideals in Z_6 .

- (d) Define characteristic of a ring. If the characteristic of an integral domain D be a non-zero number p, then prove that the order of every non-identity element in the group (D, +) is p. 1+4
- (i) Prove that every subring of the ring Z_n is an ideal. (e)
 - (ii) Let $R = (2Z, +, \cdot)$ and $I = (6Z, +, \cdot)$. Find the elements of the quotient ring R/I. Is R/I a ring with unity? Justify your answer.

 $5 \times 5 = 25$

3+2

2+3

T(3rd Sm.)-Mathematics-H/CC-6/CBCS

(f) Let C[0, 1] be the ring of all real valued continuous functions on the closed interval [0, 1]. Let $\phi : C[0, 1] \to \mathbb{R}$ be defined by $\phi(f) = f\left(\frac{1}{2}\right), f \in C[0, 1]$. Show that ϕ is an onto ring homomorphism. Prove that $C[0, 1]/[\ker \phi]$ is isomorphic to \mathbb{R} . 4+1

 $/ \ker \phi$

- (g) (i) Let D be an integral domain. Prove that the ideal $A = \{(0, x) : x \in D\}$ is a prime ideal of $D \times D$. Here '0' is the zero element of D.
 - (ii) Prove that in a ring R with identity where $a^2 = a$ for all $a \in R$, every prime ideal is maximal. 2+3
- (h) If R is a non-trivial ring such that xR = R for every non-zero $x \in R$, then prove that R is a skew field. 5

Unit - II

- 3. Answer any four questions :
 - (a) Determine the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ that maps the basis vectors (0, 1, 1), (1, 0, 1), (1, 1, 0)of \mathbb{R}^3 to the vectors (2, 1, 1), (1, 2, 1), (1, 1, 2) respectively. Find ker *T* and *ImT*. Verify that dim ker *T* + dim *ImT* = 3. 2+1+1+1
 - (b) Verify Cayley–Hamilton theorem for the matrix A. Express A^{-1} as a polynomial in A and then

compute A^{-1} where $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 3 & 1 \end{pmatrix}$. 5

(c) (i) Find dim $(S \cap T)$ where S and T are subspace of the vector space R^4 given by :

$$S = \left\{ (x, y, z, w) \in \mathbb{R}^{4} : 2x + y + 3z + w = 0 \right\}$$

$$T = \left\{ (x, y, z, w) \in \mathbb{R}^{4} : x + 2y + z + 3w = 0 \right\}.$$

(ii) Find the eigenvalues and corresponding eigenvectors of $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$. 2+3

(d) Show that $U = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a + b = 0 \right\}, W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : c + d = 0 \right\}$ are the subspaces of $\mathbb{R}_{2 \times 2}$. Find the dimension of $U, U \cap W \& U + W$. 2+1+1+1

Please Turn Over

(3)

5×4=20

T(3rd Sm.)-Mathematics-H/CC-6/CBCS

(e) Prove that the set $S = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ is a basis of the vector space \mathbb{R}^3 . Show that the vector (1, 1, 1) may replace any one of the vectors of the set S to form a new basis. 2+3

(4)

- (f) (i) Let $\phi: V \to W$ be an isomorphism where V and W are finite dimensional vector spaces over a field F. For any linearly independent subset S of V, prove that $\phi(S)$ is linearly independent in W.
 - (ii) A linear mapping $T : \mathbb{R}^3 \to \mathbb{R}^2$ is defined by $T(x_1, x_2, x_3) = (3x_1 2x_2 + x_3, x_1 3x_2 2x_3)$ for all $(x_1, x_2, x_3) \in \mathbb{R}^3$. Find the matrix of *T* relative to the ordered bases (0, 1, 0), (1, 0, 0), (0, 0, 1) of \mathbb{R}^3 and (0, 1), (1, 0) of \mathbb{R}^2 . 3+2
- (g) Let A be a 3 × 3 real matrix having the eigenvalues 1, 2, 0. Let $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ be the eigenvectors

of A corresponding to the eigenvalues 1, 2, 0 respectively. Find the matrix A.

5