2020

MATHEMATICS－GENERAL

Paper ：DSE－A－1

（Particle Dynamics）

Full Marks： 65

Candidates are required to give their answers in their own words
as far as practicable．
প্রান্তলিখিত সংখ্যাগুলি পূণমান নির্দেশক।

Day 1

（বহু বিকল্পক নৈর্ব্যক্তিক প্রশ্নাবলী）
১। নিন্নলিথিত সব প্রক্নের উত্তর দাও：
2x＞0
（ক）यদি I घাতের ক্রিয়ায় সরলরেখায় গতিশীল একটি কণার গতিবেগ u থেকে v তে পরিবর্তিত হয়，তরে গতিশক্তির পরিবর্তনের মান হবে
（অ） $1 / 2 I(u+v)$
（অ） $1 / 2 I(u-v)$
（弓） $2 I(u+v)$
（ঈ）কোনোটিই নয়।
（খ）সরলররেখিক গতিত্তে চলমান একটি কণার সরণ $x=1 / 2 v t$ ，যেখানে v হল গতিবেগ। তবে কণার ত্বরণ
（অ）ধ্রवবক
（অ）v^{2}
（弓） 0
（ऋ）t
（গ）পৃথিবী পৃষ্ঠ থেকে＇h＇উচ্চতায় অবস্থিত m ভরবিশিষ্ট একটি বস্তুকণার স্থিতিশক্তি হল
（অ）$m g h$
（অ）$g h$
（弓）$m g$
（ঈ）কোনোটিই নয়।
（ঘ）यদি কেন্দ্রীয় বলের প্রভাবে কোনো গতিশীল কণার কেন্দ্রীয় কক্ষপথটি একটি শক্কুচ্ছেদ $\frac{l}{r}=1+e \cos \theta$ হয়，তবে বল সরলভভরে থাকবে
（ब）$\frac{1}{r^{2}}$
（অा）r^{2}
（ই）$\frac{1}{r}$
（ঈ）$\frac{1}{r^{3}}$ এর সঙ্গ।
（ঙ）যদি একটি কণা হ্রুবক কৌিকি বেগে $r=a e^{\theta}$ বক্ররেখা বরাবর চলমান হয়，তবে কণাটির লম্ব－তারীয় ত্বরণ সরলভেদে থাকবে
（ज）r
（অ）r^{2}
（弓）$\frac{1}{r}$
（ॠ）$\frac{1}{r^{2}}$ এর সঙ্গে।
(চ) যদি একটি বস্তুকণার ত্বরণের অভিলম্ব উপাংশ এবং স্পর্শক উপাংশ সমান হয়, তবে এর গতিবেগ নিম্নলিখিত কেনটির সঙ্গে সমানুপাতিক, যেখানে $\tan \psi=$ স্পর্শকের নতি।
(অ) ψ
(आ) e^{ψ}
(ই) $e^{2 \psi}$
(ॠ) $e^{-\psi}$ ।
(ছ) এক অশ্বশক্তি ধ্রুবকের পরিমাপ কত হবে?
(অ) 746.3 ওয়াট (অनুমানিক)
(আ) 750 ওয়াট (আনুমানিক)
(ই) 740 ওয়াট (আনুমানিক)
(ঈ) কোনোটিই নয়।
(জ) यদি একটি বস্তুকণা y-অক্ষের সমান্তরালে একটি নির্দিষ্ট গতিবেগে এবং x-অক্ষের সমান্তরালে y-এর সমানুপাতী গতিবেগে গতিশীল হয়, তবে বস্তুকণাটির গতিবেগ হবে
(অ) একটি উপবৃত্ত
(আ) একটি অধিবৃত্ত
(ই) একটি সরলরেখা
(ঈ) কোনোটিই নয়।
(ঝ) একটি 2 kg . ভরকে 5 মিটার উচ্চতায় তুলতে কার্যের পরিমাণ হবে [$g=980$ সে.মি/সেকেন্ড²]
(অ) $98 \times 10^{7} \mathrm{ergs}$
(অ) $9.8 \times 10^{7} \mathrm{ergs}$
(ই) 9800 ergs
(ঈ) কোনোটিই নয়।
(œ) সরল দোল গতিতে চলমান কোনো বস্তুকণার সমীকরণ $x=\sin \left(\frac{\pi t}{2}\right)$ হলে, এর দোলনের পর্যায়কাল হবে
(অ) 4 একক
(আ) 2 একক
(ই) $1 / 2$ একক
(ঈ) কোনোটিই নয়।

যে-কোনো একটি প্রশ্নের উত্তর দাও :

২। (ক) কোনো চলমান বস্তুকণার অবস্থান ' t ' সময়ে $x=a \cos t$ এবং $y=a \sin t(a$ একটি ধ্রুবক) সমীকরণ দ্বারা নির্ধারিত হলে, এর গতিপথ, বেগ ও ত্বরণ নির্ণয় করো।
(খ) প্রমাণ করো যে, বায়ুশূন্য স্থানে প্রাসের গতিপথ একটি অধিবৃত্ত।
যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও:
৩। (ক) নিউটনের দ্বিতীয় গতিসূত্রটি বিবৃত করো।
(খ) m ভরবিশিষ্ট একটি কণা $m \mu\left(x+\frac{a^{4}}{x^{3}}\right)$ आকর্ষক বনের অধীনে সরলরেখায় গতিশীল, যেখানে μ একটি ধ্রুবক। যদি মূলবিন্দু থেকে a দূরত্বে থেকে কণাটি স্থিরাবস্থা থেকে যাত্রা শুরু করে, তবে দেখাও যে $\frac{\pi}{4 \sqrt{\mu}}$ সময়ে উহা মূলবিন্দুতে পৌঁছাবে।

81 (ক) কেপলারের গ্রহপথ সম্বপ্ধিত সূত্রগ্গলি বিবৃত করো।
(খ) একটি বস্তুকণা $x^{2}=8 y$ অধিবৃত্তাকার পথে এরূপ বনেের অধীনে গতিশীল হয়, যা সর্বদাই y-অক্ষের সজ্গে লম্ব। বলের সূত্রটি নির্ণয় করো এবং কণাটির গতিপথের যে-কোনো একটি বিন্দুরেত তার গতিরেগ নির্ণয় করো।
©। (ক) থ্রান্তিক গতিবেরেগর সংভ্ঞা দাও।
(খ) একটি কণাকে u গতিরেগে উল্লম্বভাবে ঊর্ধ্বমুতে এমন একটি মাধ্যমে ছোঁড়া হল যার বাধা গতিবেগের বর্গের সমানুপাতী। দেখাও বে কণাটি $\frac{V^{2}}{2 g} \log _{e}\left(1+\frac{u^{2}}{V^{2}}\right)$ সর্বোচ্চ উচ্চতা লাভ করবে বেখানে V হল প্রান্তিক গতিবেগ। \quad ২+৮

৬। একটি কণা প্রতি একক ভরে F কেন্দ্রীয় আকর্ষক বলের প্রভাবে সমতলে চলে। প্রচলিত অর্থে ব্যবহৃত প্রতীক ধরে দেখাও যে, গতিপথের অবকলজ সমীকরণ হল $\frac{h^{2}}{p^{3}} \frac{d p}{d r}=F$.

१। সমতলীয় বক্ররেখায় চলমান একটি কণার ত্বরণের স্পশ্শক এবং অভিলম্ব উপাংশ নিণ্ৰয় করো।
৮। একটি স্থিতিস্থ|পক স্ট্রিং-এর প্রান্তবিন্দু 'A'টি স্থির এবং অপর প্রান্তবিন্দুটিতে একটি ভারী বস্তুকণা ঝোলানো আছে। স্দ্রিং-টির স্থিতিস্থাপকতা ধ্রুবকের (modulus of elasticity) মান বস্তুটির ওজনের সমান। ভারী বস্তুটিকে ' A ' বিন্দু থেকে নিক্ষিপ্ত করলে, বস্তুটি স্থির হওয়ার সময়ে স্ট্রিংটির দৈর্ঘ্য $(2+\sqrt{ } 3) a$ হবে।

৯। ' H ' ধ্রুবক হারে কার্যরত একটি ইঞ্জিন একটি ' M ' ওজনবিশিষ্ট বস্তুকে ‘ R ' প্রতিবন্ধকতার বিরুদ্ধে টনছে। দেখাও যে এর সর্বোচ্চ গতি H / R এবং এর অর্ধেক গতি প্রাক্ত করতে ইঞ্জিনটির $\frac{M H\left(\ln 2-\frac{1}{2}\right)}{R^{2}}$ পরিমাণ সময় লাঢে।

১০। একটি কণা $\frac{\mu}{(\text { দূরত়্ })^{2}}$ বনের অধীনে উপবৃত্তাকার পথথ গতিশীল। (বলটি নাভিবিন্দু অভিমুখী) यদি বলের কেন্দ্র থেকে ‘ R ' দূরত্বে কণাটি ' V ' বেগে প্রক্ষিপ্ত হয়, তবে এর পর্যায়কাল $\frac{2 \Pi}{\sqrt{\mu}}\left(\frac{2}{R}-\frac{V^{2}}{\mu}\right)^{-3 / 2}$ হবে দেখাও।

[English Version]

The figures in the margin indicate full marks.

MULTIPLE CHOICE QUESTIONS

1. Answer all the questions:
(a) For a rectilinear motion of a particle, if an impulse I changes its velocity from u to v, then the change in Kinetic energy is
(i) $1 / 2 I(u+v)$
(ii) $1 / 2 I(u-v)$
(iii) $2 I(u+v)$
(iv) None of these.
(b) The law of motion in a straight line is $x=1 / 2 \mathrm{vt}$. The acceleration is
(i) $f=$ const
(ii) $f=v^{2}$
(iii) $\mathrm{f}=t$
(iv) $f=0$.
(c) The potential energy of a particle of mass m at a height h above the Earth's surface is
(i) $m g h$
(ii) mg
(iii) $g h$
(iv) None of these.
(d) If the central orbit described by a particle moving under central force is the conic $\frac{l}{r}=1+e \cos \theta$, then the force varies as
(i) $\frac{1}{r^{2}}$
(ii) r^{2}
(iii) $\frac{1}{r}$
(iv) $\frac{1}{r^{3}}$.
(e) If a particle moves along the curve $r=a e^{\theta}$ with constant angular velocity, then the cross-radial acceleration is proportional to
(i) r
(ii) r^{2}
(iii) $\frac{1}{r}$
(iv) $\frac{1}{r^{2}}$.
(f) If the tangential and normal components of acceleration be equal, then the velocity is proportional to
(i) ψ
(ii) e^{ψ}
(iii) $e^{2 \psi}$
(iv) $e^{-\psi}$.
(g) Horse-Power $=$
(i) 746.3 watts (Approx)
(ii) 750 watts (Approx)
(iii) 740 watts (Approx)
(iv) None of these.
(h) If a particle is moving with a constant velocity parallel to the axis of y and velocity proportional to y parallel to the axis of x, then the path of the particle is
(i) an ellipse
(ii) a parabola
(iii) a straight line
(iv) None of these.
(i) The work done in raising a mass of 2 kg to a height of 5 meters is [$g=980 \mathrm{~cm} / \mathrm{sec}^{2}$]
(i) $98 \times 10^{7} \mathrm{ergs}$
(ii) $9.8 \times 10^{7} \mathrm{ergs}$
(iii) 9800 ergs
(iv) None of these.
(j) For a Simple Hormonic motion defined by $x=\sin \left(\frac{\pi t}{2}\right)$ the time period is
(i) 4 unit
(ii) 2 unit
(iii) $1 / 2$ unit
(iv) None of these.

Answer any one question :
2. (a) The position of a moving point at time t is given by $x=a \cos t$ and $y=a \sin t$. Find its path, velocity and acceleration.
(b) Prove that the path of a projectile in vacua is a parabola.

Answer any five questions :
3. (a) State Newton's second law of motion.
(b) A particle of mass m is acted on by a force $m \mu\left(x+\frac{a^{4}}{x^{3}}\right), \mu$ being constant, towards the origin. If it starts from rest at a distance a from origin, show that it will arrive at the origin in time $\frac{\pi}{4 \sqrt{\mu}}$.
4. (a) State the Kepler's laws of planetary motion.
(b) A particle describes a parabola $x^{2}=8 y$ under a force always perpendicular to y-axis. Find the law of force and the velocity of the particle at any point of its orbit.
5. (a) Define terminal velocity.
(b) A particle is projected vertically upwards with a velocity ' u ' in a medium whose resistance varies as the square of the velocity. Show that the greatest height attained by the particle is $\frac{V^{2}}{2 g} \log _{e}\left(1+\frac{u^{2}}{V^{2}}\right)$, where V is the terminal velocity.
6. A particle describes a plane curve under the action of a central attractive force F per unit mass. Prove that in usual notation the differential equation to the path of the particle is $\frac{h^{2}}{p^{3}} \frac{d p}{d r}=F$.
7. Find the expressions for tangential and normal components of velocity and acceleration of a particle moving in a plane.
8. One end of an elastic string is fixed at A and the other end is fastened to a heavy particle, the modulus of elasticity of the string being equal to the weight of the particle. Show that if the particle be dropped from A, it will descend a distance $(2+\sqrt{ } 3) a$ before coming to rest.
9. An engine working at a constant rate H, draws a load M against a resistance R. Show that the maximum speed is H / R and the time taken to attain half this speed is $\frac{M H\left(\ln 2-\frac{1}{2}\right)}{R^{2}}$.
10. A particle describes an ellipse under a force $\frac{\mu}{(\text { distance })^{2}}$, towards a focus. If it was projected with a velocity V from a point distant R from the centre of force, then show that the periodic time is $\frac{2 \Pi}{\sqrt{\mu}}\left(\frac{2}{R}-\frac{V^{2}}{\mu}\right)^{-3 / 2}$.

