T(3rd Sm.)-Economics-H/CC-7/CBCS

2020

ECONOMICS — HONOURS

Paper : CC-7

(Statistical Methods for Economics)

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any ten questions :

(a) Are the following data consistent? Give reasons.

Group	Number of observations	Median
Ι	40	85
II	50	90
Combined	90	69

- (b) State whether the following statements are true or false :
 - (i) AM can never be less than HM.
 - (ii) GM cannot be computed for a frequency distribution with open-end class.
- (c) What do you mean by a relative measure of dispersion?
- (d) A distribution has the standard deviation 2. What should be the value of the fourth order central moment such that the distribution in mesokurtic?
- (e) Mention some cases where the correlation coefficient may give misleading idea about the relationship between two variables.
- (f) State with reasons whether the following statement is True or False : The regression coefficient of Y on X is 3.1 and that of X on Y is 0.9.
- (g) Show that if A and B are two independent events then A^c and B are also independent.
- (h) Two letters are drawn at random from the word HOME. Find the probability that one of the letters chosen is M.
- (i) For two events A and B, let P(A) = 0.4, $P(A \cup B) = 0.7$ and P(B) = p. For what value of p are A and B mutually exclusive?

Please Turn Over

 2×10

- (j) If a person gets Rs. (2X + 5) where X denotes the number appearing when a balanced die is rolled once, how much money can he expect in the long run per game?
- (k) Show that for a random variable X following a binomial distribution with parameters n and p, maximum variance is n/4.
- (l) Define a standard normal variable. Write down its probability density function.
- (m) Show that for two independent random variables (discrete or continuous) $E(XY) = E(X) \cdot E(Y)$.
- (n) What do you mean by simple random sample with replacement?
- (o) What are sampling and non-sampling errors?

Group - B

Answer any three questions.

- **2.** If the Standard Deviation of 1, 2,, *n* is $\sqrt{14}$, find *n*.
- 3. Given that x = 4y + 5 and y = kx + 4 are regression equations of X on Y and of Y on X respectively, show that $0 \le k \le 0.25$. If actually k = 0.10, find the means of the variables X and Y and also their coefficient of correlation. 5
- 4. There are two identical boxes containing respectively 4 white and 3 red balls, and 3 white and 7 red balls. A box is chosen at random and a ball is drawn from it. If the ball is white, what is the probability that it is from the first box?
- 5. The probability that an individual will suffer a bad reaction from a particular injection is 0.001. Determine the probability that out of 2000 individuals (i) exactly 3 and (ii) more than 2 will suffer a bad reaction. [Given $e^{-2} = 0.13534$]
- 6. What do you mean by Stratified Sampling?

Group - C

Answer any three questions.

- 7. (a) For two observations a and b (a, b > 0), show that $AM \ge GM \ge HM$.
 - (b) Find a suitable measure of central tendency for the following distribution justifying your choice.

Class-limit	Frequency	
51 - 55	4	
56 - 60	10	
61 - 65	14	
66 and above	2	

5

5

- **8.** (a) If all observations on a variable are equal, then show that all measures of dispersion are zero. Are you surprised by this result? Why?
 - (b) The first of the two samples has 100 items with mean 15 and SD 3. If the whole group has 250 items with mean 15.6 and $SD \sqrt{13.44}$, find the SD of the second group. (4+1)+5
- 9. (a) Consider the sample space S = {e₁, e₂, e₃, e₄}. Define the events A = {e₁, e₃}, B = {e₂, e₃}, C = {e₃, e₄}.
 Are A, B, C (i) pairwise independent? (ii) mutually independent? What conclusion can you draw from the answers to (i) and (ii)?
 - (b) 3 lots contain respectively 10%, 20% and 25% defective articles. One article is drawn at random from each lot. What is the probability that among them there is exactly one defective? (2+1+1)+6
- 10. (a) If T_1 and T_2 be statistics with expectations

 $E(T_1) = 2\theta_1 + 3\theta_2$ and $E(T_2) = \theta_1 + \theta_2$

find unbiased estimators of parameters θ_1 and θ_2 .

(b) The mean yield per plant for 11 tomato plants of a particular variety was found to be 1200 gm with a *SD* of 90 gm. Set up 99% confidence limits to the mean yield of all plants of this variety assuming that yield per plant follows normal distribution.

Given that $Z_{.005} = 2.58 t_{.005, 10} = 3.169 t_{.005, 11} = 3.106.$ 4+6

- 11. (a) Argue whether the following statement is true or false: If H_0 is accepted at α_1 % level of significance, then it will definitely be accepted at α_2 % level of significance, where $\alpha_1 < \alpha_2$.
 - (b) Suppose that a random sample of size 9, drawn from a normal population with SD 6, has mean 52. Test H₀: μ = 55 ag H₁: μ ≠ 55 at 1% level.

Given that $Z_{.005} = 2.58$, $t_{.005,8} = 3.355$. $t_{.005,9} = 3.250$. 5+5

(3)