2020

MATHEMATICS - HONOURS

Paper : CC-7

Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
\mathbb{R} denotes the set of real number

Group - A

(Marks : 20)

1. Answer the following multiple choice questions with only one correct option. Choose the correct option and justify ;
$(1+1) \times 10$
(a) If x, x^{2}, x^{3} are three linearly independent solutions of a third-order differential equation, then the Wronskian W of the functions has value
(i) $W=2 x^{3}$
(ii) $W=x^{3}$
(iii) $W=x^{2}$
(iv) $W=2 x^{2}$.
(b) One of the points which lies on the solution curve of the differential equation $(y-x) d x+(x+y) d y=0$ with given condition $y(0)=1$ is
(i) $(1,-2)$
(ii) $(2,-1)$
(iii) $(2,1)$
(iv) $(-1,2)$.
(c) If the integrating factor of $\left(x^{7} y^{2}+3 y\right) d x+\left(3 x^{8} y-x\right) d y=0$ is $x^{m} y^{n}$, then
(i) $m=-7, n=1$
(ii) $m=1, n=-7$
(iii) $m=0, n=0$
(iv) $m=1, n=1$.
(d) Let $y(x)$ be the solution of the differential equation $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=0, y(0)=1,\left.\frac{d y}{d x}\right|_{x=0}=-1$, then $y(x)$ attains its maximum value at
(i) $\ln \frac{4}{3}$
(ii) $\ln \frac{3}{4}$
(iii) $\ln \frac{1}{2}$
(iv) none of these.
(e) Consider the differential equation $a \frac{d y}{d x}+b y=c e^{-\lambda x}$, where a, b, c are positive constants and λ is a non-negative constant. Then every solution of the differential equation approaches to $\frac{c}{b}$ as $x \rightarrow+\infty$ when
(i) $\lambda>0$
(ii) $\lambda=0$
(iii) $\lambda=\frac{b}{a}$
(iv) $\lambda=\frac{a}{b}$.
(f) Which one of the following is correct for the linear differential equation $\left(x^{2}+x\right) \frac{d^{2} y}{d x^{2}}-2(x+1) \frac{d y}{d x}+2 y=0 ?$
(i) 0 is an ordinary point
(ii) -1 is a regular singular point
(iii) -1 is an irregular singular point
(iv) 0 is an irregular singular point.
(g) The initial value problem $x \frac{d y}{d x}=y, y(0)=0, x \geq 0$ has
(i) no solution
(ii) a unique solution
(iii) exactly two solutions
(iv) uncountably many solutions.
(h) The double limit $\lim _{(x, y) \rightarrow(0,0)} \frac{|x|}{y^{2}} e^{-\frac{|x|}{y^{2}}}$
(i) does not exist
(ii) exist and equal to 0
(iii) exist and equal to 1
(iv) exist and equal to -1 .
(i) Consider the function $f(x, y)=x^{2}-4 x y+4 y^{2}+2 x^{4}+3 y^{4}$, then
(i) f has no extrema at $(0,0)$
(ii) f has maximum value at $(0,0)$ which is 0
(iii) f has maximum value at $(0,0)$ which is 1
(iv) f has minimum value at $(0,0)$ which is 0 .
(j) Let $T(x, y, z)=x y^{2}+2 z-x^{2} z^{2}$ be the temperature at the point (x, y, z). The unit vector in the direction in which the temperature decreases most rapidly at $(1,0,-1)$ is
(i) $-\frac{1}{\sqrt{5}} \hat{i}+\frac{2}{\sqrt{5}} \hat{k}$
(ii) $\frac{1}{\sqrt{5}} \hat{i}-\frac{2}{\sqrt{5}} \hat{k}$
(iii) $\frac{2}{\sqrt{14}} \hat{i}+\frac{3}{\sqrt{14}} \hat{j}+\frac{1}{\sqrt{14}} \hat{k}$
(iv) $-\frac{1}{\sqrt{5}} \hat{i}-\frac{2}{\sqrt{5}} \hat{k}$.

Group - B

(Marks: 30)

Answer any six questions.

2. Show that a constant K can be found so that $(x+y)^{K}$ is an integrating factor of

$$
\left(4 x^{2}+2 x y+6 y\right) d x+\left(2 x^{2}+9 y+3 x\right) d y=0
$$

and hence solve the equation.
3. Reduce the equation $x^{3} p^{2}+x^{2} y p+a^{3}=0$ to Clairaut's form by the substitution $y=u$ and $x=\frac{1}{v}$ and obtain the complete primitive.
4. Solve using the method of undetermined coefficients, the equation with initial conditions,
$\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-3 y=2 e^{x}-10 \sin x, \quad y(0)=2$ and $y^{\prime}(0)=4$.
5. Solve by the method of variation of parameters the equation $\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}-\frac{1}{x^{2}} y=\log x,(x>0)$.
6. Solve $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos \log (1+x)$ by changing the independent variables.
7. Use D-operator to solve :

$$
\frac{d^{2} y}{d x^{2}}-y=x \sin x+\left(1+x^{2}\right) e^{x}
$$

8. Show that the equation of the curve, whose slope at any point (x, y) is equal to $x y\left(x^{2} y^{2}-1\right)$ and which passes through the point $(0,1)$ is $x^{2} y^{2}=1-y^{2}$.
9. Solve for x from the system of equations

$$
\begin{aligned}
& \frac{d x}{d t}+4 x+3 y=t \\
& \frac{d y}{d t}+2 x+5 y=e^{t}
\end{aligned}
$$

10. Consider the plane autonomous system

$$
\frac{d x}{d t}=2 x+y, \frac{d y}{d t}=3 x+4 y
$$

Find the general solution of the system. State the nature of the critical point of the system. Discuss its stability. Draw a phase portrait of the system.
11. Solve the equation $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}+2\right) y=0$ in series about the ordinary point $x=0$.

Group - C
(Marks: 15)

Answer any three questions.

12. Define limit point of a subset of $\mathbb{R} \times \mathbb{R}$. If $B=\{(a, 0) ; a \in \mathbb{R}\}$. Show that B is a closed set but not open in $\mathbb{R} \times \mathbb{R}$.
13. State the sufficient conditions for differentiability of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Examine whether the sufficient conditions of differentiability are satisfied for the following function $f(x, y)$ and hence comment on differentiability of $f(x, y)$ at $(0,0)$ where $f(x, y)=\left\{\begin{array}{cc}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & \text { when } x^{2}+y^{2} \neq 0 \\ 0, & \text { when } x^{2}+y^{2}=0 .\end{array}\right.$
14. If z is a function of two variables x and y and $x=c \cosh u \cos v, y=c \sinh u \sin v$ (c is a real number), show that

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial u^{2}}+\frac{\partial^{2} z}{\partial v^{2}}=\frac{c^{2}}{2}(\cosh 2 u-\cos 2 v)\left(\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}\right) . \tag{5}
\end{equation*}
$$

15. Find all critical points of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=x^{3}+y^{3}-3 x-12 y+40$ for $(x, y) \in \mathbb{R}^{2}$. Also examine whether the function f attains a local maximum or a local minimum at each of these critical points.
16. Find the volume of the greatest rectangular parallelopiped that can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$, by the method of Lagrange's multipliers.
