2020

MATHEMATICS - GENERAL

Paper : DSE-A-1

(Particle Dynamics)

Full Marks : 65

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূণমান নির্দেশক।

Day - 2

বহু বিকল্পক নৈর্ব্যক্তিক প্রশ্নাবলী

১। নিম্নলিখিত সব প্রশ্নের উত্তর দাও :
(ক) একটি কণা সরললরেখা বরাবর $S^{2}=6 t^{2}+4 t+3$ গতির নিয়নে চলে, যেখানে S হল সরণ এবং t হল সময়। তবে কণাটির ত্বরণ নিম্নলিখিত কোনটির সঙ্গে সরলভেদে থাকবে ?
(অ) $\frac{1}{S^{3}}$
(आ) $\frac{1}{S^{2}}$
(ই) S^{2}
(ॐ) $\frac{1}{S}$
(খ) যদি একটি কণা $r=a \cos \theta$ বর্রের উপর কেন্দ্রীয় বল দ্বারা চালিত হয়, তরে কণাটি নিন্নলিখিত কেনটির সঙ্গে সরলভেদ্র থাকবে ?
(অ) $\frac{1}{r^{5}}$
(অ) $\frac{1}{r^{3}}$
(ই) r^{3}
(ঈ) r^{5}
(গ) C.G.S. পদ্ধতিতে কার্যের পর়ম একক হল
(অ) ফুট-পাউন্ডাল
(আ) आর্গ
(ই) অশ্বশক্তি
(ঈ) কোনোটিই নয়।
(ঘ) 2 কিলোগ্রাম ভরের একটি বস্তুকে 5 মিটার উচ্চতায় তুলতে কার্যের পরিমাণ হল
(অ) 98 জুল
(আ) 95 জুল
(ই) 97 জুল
(ঈ) 96 জুল।
(ঙ) কেন্দ্রীয় বলের অধীনে চলমান কোনো বস্তুর ক্ষেত্রে ধ্রুবক h-এর মান হল
(অ) $h=r \frac{d \theta}{d t}$
(आ) $h=\frac{d \theta}{d t}$
(弓) $h=\frac{1}{r} \frac{d \theta}{d t}$
(ঈ) $h=r^{2} \frac{d \theta}{d t}$ ।
(চ) সরল দোলগতিতে চলমান কোনো বস্তুকণার সমীকরণ $x=\cos \left(\frac{\pi t}{3}\right)$ হলে, দোলনের পর্যায়কাল হবে
(অ) 9 একক
(আ) 6 একক
(ই) 3 একক
(ঈ) 12 একক।
(ছ) কোনো বস্তুর উপর ক্রিয়াশীল ঘাতের (Impulse) পরিমাপ হল
(অ) ঘাত = গতিশক্তির পরিবর্তন
(আ) ঘাত = ভরবেগের পরিবর্তন
(ই) ঘাত = ক্রিয়াশীীল বল দ্বারা কার্যের পরিমাণ
(ঈ) কোনোটিই নয়।
(জ) $\frac{1}{4}$ পাউন্ড ভরবিশিষ্ট একটি ক্রিকেট বল 15 ফুট/সেকেন্ড গতিতে ধাবমান। বলটি একটি ব্যাটের আঘাতে 40 ফুট/সেকেন্ড গতিবেগে বিপরীত অভিমুটে ধাবিত হলে ব্যাটের অভিঘাত বল হল
(অ) $13 \frac{3}{4}$ সেকেন্ড পাউন্ডাল
(আ) 13 সেকেন্ড পাউন্ডাল
(ই) $\frac{3}{4}$ সেকেন্ড পাউন্ডাল
(ঈ) কোনোটিই নয়।
(ঝ) একটি কণা $S=\frac{1}{2} v t$ গতিসূত্র নেনে সরলরেখায় চলে, যেখানে v কণাটির গতিবেগ। তাহলে ত্বরণ হল
(অ) বেগের সঙ্গে সমানুপাতিক
(আ) বেগের বর্গের সঙ্গে সমানুপাতিক
(ই) বেগের অন্যোন্যকের সঙ্গে সমানুপাতিক
(ঈ) ধ্রুবক।
(œ) একটি বস্তুকণার চলমান পতের বক্রের সমীকরণ $r=a e^{\theta}$, যার কৌণিক বেগ ধ্রুবক। তাহলে অরীয় ত্বরণের মান
(অ) r-এর সঙ্গে সমানুপাতিক
(অ) θ-এর সঙ্গে সমানুপাতিক
(ই) শূন্য নয় এমন ধ্রুবক
(ঈ) শূन्य।

২। যে-কোনো একটি প্রশ্নের উত্তর দাও :
(ক) সমতলীয় বর্ররেখায় চলমান একটি কণার ত্বরণের স্পর্শক উপাংশ নির্ণয় করো।
(খ) M ভরবিশিষ্ট কামান থেকে m ভরবিশিষ্ট গোলা নিক্ষেপের জন্য বিস্ফোরণে E পরিমাণ গতিশক্তি সৃষ্টি হয়। দেখাও যে কামানের গোলার প্রারম্ভিক গতিবেগ ছিল $\sqrt{\frac{2 M E}{(M+m) m}}$ ।

যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও :

১০×৫
৩। (ক) ধ্রুবক ঘাতসম্পন্ন একটি ইঞ্জিন, যা প্রতি সেকেন্ডে H একক কার্য করে, তা একটি ট্রেনকে টেনে নিয়ে যাচ্ছে। যদি সমগ্র ট্রেনের ভর M হয় এবং বাধা R-কে ধ্রুবক বলে ধরা হয়, তবে দেখাও যে স্থিতাবস্থা থথকে V গতিবেগ উৎপন্ন করতে $\left(\frac{M H}{R^{2}} \log \frac{H}{H-R V}-\frac{M V}{R}\right)$ সেকেন্ড সময় লাগবে।
(খ) R পাউন্ডাল বাধার বিরুদ্ধে V ফুট/সেকেন্ড গতিতে চলন্ত একটি ট্রেনের ইঞ্জিনের অশ্বশক্তি কত?
$8 । ~(ক) ~ এ ক ট ি ~ ক ণ া ~ স র ল র ে খ া ~ ব র া ব র ~ x=a \cos (n t+b)$ গতির নিয়মে চলে। দেখাও যে কণাটির ত্বরণ কেন্দ্রাভিমুখী এবং দূরত্বের সঙ্গে সরলভেদে আছে।
(খ) সরল দোলন গতিসন্পন্ন একটি কণার কেন্দ্রবিন্দু O-এর সাপেক্ষে পর্যায়কাল (period) T এবং এটি $O P$ অভিমুতে P বিন্দুকে V গতিবেগে অতিক্রম্ম করে। যদি কণাটি P বিন্দুতে ফিরে আসতে t সময় নেয় তাহলেে দেখাও যে $t=\frac{T}{\pi} \tan ^{-1}\left(\frac{V T}{2 \pi x}\right)$ এবং $O P=\frac{V T}{2 \pi} \cot \frac{\pi t}{T}$, যেখানে $O P=x$ ।

৫। (ক) নিউটনের দ্বিতীয় গতিসূত্রটি বিবৃত করো।
(খ) বলকেন্দ্র O থেকে x দূরত্বে $\mu x^{-5 / 3}$ आকর্ষক বলের অধীনে একাটি কণা সরলরেখায় গতিশীল। যদি O বিন্দু থেকে a দূরত্বে থেকে কণাটি স্থিরাবস্থা থেকে যাত্রা শুরু করে, তবে দেখাও যে কণাটি $\frac{2 a^{4 / 3}}{\sqrt{3 \mu}}$ সময়ে O বিন্দুতে পৌঁছাবে। ২+৮-

৬। (ক) একটি বস্তুকণা $x^{2}=8 y$ অধিবৃত্তাকার পথে এরূপ বলের অধীনে গতিশীল হয়, যা সর্বদই y অক্ষের সঙ্গে লম্ব। বলের সূত্রটি নির্ণয় করো এবং কণাটির গতিপথের যে-কোনো একটি বিন্দুতে তার গতিবেগ নির্ণয় করো।
(খ) রৈখিক ভরবেগের নিত্যতার সূত্রটি বিবৃত করো। b-২

৭। (ক) m ভরবিশিষ্ট একটি বস্তুকণার উপর $m \mu\left(r^{-3}+8 c^{2} r^{-5}\right)$ পরিমাণ কেন্দ্রাভিমুখী বল ক্রিয়া করে। কণাটি যদি c দূরত্বে apse থেকে $\frac{3 \sqrt{\mu}}{c}$ বেগে প্রক্ষিপ্ত হয়, তাহলেে প্রমাণ করো যেে কণাটির কক্ষপথের সমীকরণ হবে $r=c \cos \left(\frac{2}{3} \theta\right)$ ।
(খ) কেপলারের গ্রহগতির সূত্রগুলি বিবৃত করো। b-২
b-। (ক) একটি বস্তুকণা একটি মাধ্যমে ছছঁঁড়া হল। মাধ্যকের বাধা কণার গতিবেগের ঘনের সঙ্গে সমানুপাতিক এবং অন্য কোন্ো বল কণার উপর কাজ করছে না। t সময়ে বস্তুকণাটি যদি d দূরত্ব যায় এবং গতিবেগ যদি v_{1} থেকে হ্রাস পেয়ে v_{2} হয়, তবে দেখাও যে $\frac{d}{t}=\frac{2 v_{1} v_{2}}{\left(v_{1}+v_{2}\right)}$ ।
(খ) শক্তির সংরক্ষণ সূত্রটি বিবৃত করো।
৯। (ক) একটি কণার প্রতি একক ভরের উপর F আকর্ষক বলের অধীনে কেন্দ্রীয় কক্ষপথে বিচরণশীল। ওই কণার কক্ষপথের অবকল সমীকরণ নিন্নোক্ত আকারে প্রকাশ করো ঃ

$$
\frac{d^{2} u}{d \theta^{2}}+u=\frac{F}{h^{2} u^{2}} \text { । (প্রতীকগুলি প্রচলিত অর্থে ব্যবহৃত) }
$$

(খ) Apse এবং Apsidal distance-এর সংজ্ঞা দাও।

১০। m ভরবিশিষ্ট কোনো একটি কণা $\left\{\mu \div(\text { দূরত্ণ })^{2}\right\}$ এই কেন্দ্রীয় ত্ররণ দ্বারা গতিশীল। কণাটিকে R দূরত্ব থেকে V গতিরেরেগে উৎক্কেপণ করা হয়েছে। দেখাও বে, কণাটির গতিপথ একটি সমপরাবৃত্ত (Rectangular hyperbola) হবে যদি প্রক্ষে কোণটি হয় $\sin ^{-1}\left[\mu \div\left\{V R \sqrt{\left(V^{2}-\frac{2 \mu}{R}\right)}\right\}\right]$ ।

[English Version]

The figures in the margin indicate full marks.

Multiple Choice Questions

1. Answer all the questions :
(a) A particle moves along a straight line according to the law $S^{2}=6 t^{2}+4 t+3$, where S is the displacement and t is the time. Then its acceleration varies as
(i) $\frac{1}{S^{3}}$
(ii) $\frac{1}{S^{2}}$
(iii) S^{2}
(iv) $\frac{1}{S}$.
(b) If a particle describes the curve $r=a \cos \theta$ under a central force to the pole, then the force varies as
(i) $\frac{1}{r^{5}}$
(ii) $\frac{1}{r^{3}}$
(iii) r^{3}
(iv) r^{5}.
(c) In C.G.S. system the absolute unit of work is
(i) Foot-poundal
(ii) Erg
(iii) Horsepower
(iv) None of these.
(d) The work done in raising a mass of 2 kg to a height of 5 meter is
(i) 98 joules
(ii) 95 joules
(iii) 97 joules
(iv) 96 joules.
(e) For a central orbit, the expression for the constant h is
(i) $h=r \frac{d \theta}{d t}$
(ii) $h=\frac{d \theta}{d t}$
(iii) $h=\frac{1}{r} \frac{d \theta}{d t}$
(iv) $h=r^{2} \frac{d \theta}{d t}$.
(f) For a Simple Harmonic motion $x=\cos \left(\frac{\pi t}{3}\right)$, the time period is
(i) 9 unit
(ii) 6 unit
(iii) 3 unit
(iv) 12 unit.
(g) The impulse acting on a body is given by
(i) Impulse $=$ Change in Kinetic energy
(ii) Impulse $=$ Change in Momentum
(iii) Impulse $=$ Workdone by acting force
(iv) None of these.
(h) A cricket ball weighing $\frac{1}{4} l b$ is moving with a velocity of $15 \mathrm{ft} / \mathrm{second}$ and is struck by a bat which causes it to travel in the opposite direction with a velocity of $40 \mathrm{ft} /$ second. Then the impulsive force of the bat is
(i) $13 \frac{3}{4} \mathrm{sec}$-pondals
(ii) 13 sec-poundals
(iii) $\frac{3}{4}$ sec-pondals
(iv) None of these.
(i) The law of motion of a particle moving in a straight line is $S=\frac{1}{2} v t$. Then the acceleration is
(i) proportional to velocity
(ii) proportional to square of velocity
(iii) proportional to inverse of velocity
(iv) constant.
[v is the velocity of the particle]
(j) A particle describes a curve $r=a e^{\theta}$ with constant angular velocity. Then the radial acceleration is
(i) proportional to r
(ii) proportional to θ
(iii) non-zero constant
(iv) zero.
2. Answer any one question :
(a) Find the expression for tangential component of velocity of a particle moving in a plane.
(b) A Cannon ball of mass m is projected from a Cannon of mass M by an explosion which generates kinetic energy E. Prove that the initial velocity of the Cannon ball is $\sqrt{\frac{2 M E}{(M+m) m}}$.

Answer any five questions.

3. (a) An engine works at a constant power H units of work per second. It pulls a train of total mass M against a constant resistant R. Show that the train acquires velocity V in time $\left(\frac{M H}{R^{2}} \log \frac{H}{H-R V}-\frac{M V}{R}\right)$ seconds.
(b) What is the Horsepower of the engine which keeps a train moving with velocity $V \mathrm{ft} /$ second against a resistance of R poundals?
$8+2$
4. (a) A particle moves along a straight live under the law of motion given by $x=a \cos (n t+b)$. Show that the acceleration is directed to the origin and varies as the distance.
(b) A particle is performing a simple harmonic motion of period T about a centre O and it passes through a point P with a velocity V in the direction $O P$. If the particle returns to P in time t, then show that $t=\frac{T}{\pi} \tan ^{-1}\left(\frac{V T}{2 \pi x}\right)$ and $O P=\frac{V T}{2 \pi} \cot \frac{\pi t}{T}$, where $O P=x$.
5. (a) State Second law of Newton.
(b) A particle moves in a straight line under the action of an attractive force $\mu x^{-5 / 3}$, when at a distance x from the centre of force O. If it starts from rest at a distance ' a ' from O, then show that it will arrive at O in time $\frac{2 a^{4 / 3}}{\sqrt{3 \mu}}$.
6. (a) A particle describes a parabola $x^{2}=8 y$ under a force which is always perpendicular to y-axis. Find the law of force and the velocity of the particle at any point on its orbit.
(b) State the principle of conservation of linear momentum.
7. (a) A particle of mass m moves under a central attractive force $m \mu\left(r^{-3}+8 c^{2} r^{-5}\right)$ and is projected from an apse at a distance c with velocity $\frac{3 \sqrt{\mu}}{c}$. Prove that the equation of the orbit is $r=c \cos \left(\frac{2}{3} \theta\right)$.
(b) Write Kepler's laws on planetary motion.
8. (a) A particle is projected in a medium whose resistance is proportional to the cube of the velocity and no other force acts on the particle. While the velocity diminishes from v_{1} to v_{2}, the particle traverses a distance d in time t. Show that $\frac{d}{t}=\frac{2 v_{1} v_{2}}{\left(v_{1}+v_{2}\right)}$.
(b) State the principle of conservation of energy.
9. (a) Establish the differential equation of the path for the motion of a particle moving in a central orbit under an attractive force F per unit mass, in the form $\frac{d^{2} u}{d \theta^{2}}+u=\frac{F}{h^{2} u^{2}}$ (symbols have their usual meanings).
(b) Define apse and apsidal distances.
10. A particle of mass m is moving with central acceleration $\left\{\mu \div(\text { distance })^{2}\right\}$. It is projected with a velocity V at a distance R. Show that its path is a rectangular hyperbola if the angle of projection is $\sin ^{-1}\left[\mu \div\left\{V R \sqrt{\left(V^{2}-\frac{2 \mu}{R}\right)}\right\}\right]$.
