2020

MATHEMATICS - GENERAL

Paper: DSE-A-1

(Particle Dynamics)

Full Marks : 65
Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যগুলি পূণমান নির্দেশক।

Day 3

বহু বিকল্প নৈর্ব্যক্তিক প্রশ্মাবনী

১। নিন্নলিখিত সব প্রশ্নের উত্তর দাও :
2×20
(ক) 80 গ্রাম ভরবিশিষ্ট একটি পাথরের স্থির অবস্থা থেকে পতনের অষ্টম সেকেন্ড কার্যের পরিমাণ হরে
[$\mathrm{g}=980$ সেমি/সেকেন্ড²]
(অ) 588000 ergs
(আ) 5880 ergs
(ই) 588 ergs
(ঈ) এদের মধ্যে কোনোটিই নয়।
(খ) যদি v গতিবেগে সরলরেখা বরাবর গতিশীল কোনো কণার গতিবেগ $v^{2}=a x^{2}+b$ রাশি দ্বারা প্রদত্ত হয়, যেখানে x ওই সরলরেখার কোনো নির্দিষ্ট বিন্দু থেকে ওই কণাটির দূরত্ব এবং a, b ধ্রুবক, তবে কণাটির ত্বরণ সরল ভেদে থাকবে নিম্নলিখিত কোনটির সঙ্গে?
(অ) x
(आ) x^{2}
(ই) $\frac{1}{x}$
(ঈ) $\frac{1}{x^{2}}$ ।
(গ) यদি সময় t, গতিবেগ v-এর একটি অপেক্ষক হয়, তবে ত্বরণ f-এর হ্রাসের হার হবে
(ज) $f^{3} \frac{d^{2} t}{d v^{2}}$
(অ) $f^{3} \frac{d^{3} t}{d v^{3}}$
(弓) $f^{2} \frac{d^{3} t}{d v^{3}}$
(ঈ) কোনোটিই নয়।
(ঘ) সরল দোল গতিতে চলমান বস্তুর দোলনের পূর্ণ সময়কাল হলো
(অ) $T=\frac{\pi}{\sqrt{\mu}}$
(आ) $T=\frac{\pi}{2 \sqrt{\mu}}$
(ই) $T=\frac{2 \pi}{\sqrt{\mu}}$
(ঈ) $T=\frac{\pi}{\sqrt{2 \mu}}$ ।
(প্রতীকগুলো প্রচলিত অর্থ্থ ব্যবগৃত)
(ঙ) কেন্দ্রীয় বল $F=\mu r$ বনের অধীনে চলমান একটি বস্তুর কেন্দ্র থেকে r দূরত্বে স্থিরাবস্থা থেকে কেক্ক্রে পতিত হবার গতিবেগ रলো
(অ) $v_{0}^{2}=\mu r^{2}$
(आ) $v_{0}^{2}=\mu r$
(ই) $v_{0}^{2}=\frac{\mu}{r^{2}}$
(ॠ) $v_{0}^{2}=\frac{\mu}{r}$ ।
(চ) x-অক্ষ বরাবর v বেগে চলমান কোনো বস্তুর গতিবেগের মান হুলো, $v^{2}=16-x^{2}$, তাহুলে গতির বিস্তৃতি (amplitude) रলো,
(অ) 2 একক
(আ) 1 একক
(ই) $\frac{1}{2}$ একক
(ঈ) $\frac{3}{2}$ একক।
(ছ) নিম্নলিখিত কোন রাশিটি স্কেলার (scalar)?
(অ) সরণ
(আ) प्राত
(ই) বেগ
(ঈ) কোনোটিই নয়।
(জ) P বিন্দুতে অবস্থিত একটি বস্তুর t সময়ে অক্ষ বরাবর গতিবেণের উপাংশগুলি হলো u এবং v । তাহলে অক্ষ বরাবর ত্বরণের উপাংশগুলি হুলো
(অ) $u \frac{d u}{d x}, v \frac{d v}{d y}$
(आ) $\frac{d u}{d x}, \frac{d v}{d y}$
(ই) $u \frac{d v}{d y}, v \frac{d u}{d x}$
(ঈ) কোনোটিই নয়।
(ঝ) v স্থির গতিবেগ সম্পন্ন একটি কণা, a ব্যাসার্ধ যুক্ত বৃত্তাকার পথে চলে। দেখাও যে কোনো মুহূর্তে তার অভিলম্ব ত্বরণ
(অ) $\frac{v^{3}}{a}$
(अ) $\frac{v}{a}$
(ই) $\frac{v^{2}}{a}$
(ॠ) $\frac{v^{2}}{a^{2}}$ ।
(œ) মূলবিন্দুর সাপেক্ষে একটি বস্তুকণার কৌণিক বেগ ধ্রুবক হলে লম্ব অরীয় দিশায় কণাটির ত্বরণের উপাংশ কীরূপ হবে ?
(অ) কণাটির ত্বরণের উপাংশ অরীয় দিশায় কণাটির বেগের সমানুপাতিক
(আ) কণাটির ত্বরণেের উপাংশ অরীয় দিশায় কণাটির বেতের বর্গের সমানুপাতিক
(ই) কণাটির ত্বরণের উপাংশ অরীয় দিশায় ধ্রুবক
(ঈ) কণাটির ত্বরণের উপাংশ অরীয় দিশায় কণাটির বেগের ঘনের সমানুপাতিক।

যে-কোনো একটি প্রশ্নের উত্তর দাও।

२। (ক) কোনো কণা $r^{4}=a^{4} \cos 4 \theta$ পথে এমন একটি বলের অধীনে গতিশীল যা সর্বদাই কেন্দ্রাভিমুখী। বলের সূত্রটি নির্ণয় করো।
(খ) সরলরেখায় গতিশীল একটি কণার ওই রেখার ওপর অবস্থিত মূলবিন্দুর দিকে ত্বরণ $n^{2} x$ এবং একই সঙ্গে প্রতি একক ভরে $F \operatorname{cospt}$ পরিমাপের পর্যাবৃত্ত বল ওই কণার ওপর ক্রিয়া করে। কণাটির গতি সম্বন্ধে আলোচনা করো যখন $n \neq p$ । ৫

যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও।

৩। (ক) Apse এবং Apsidal দূরত্বের সংজ্ঞা দাও।
(খ) m ভরবিশিষ্ট একটি বস্তুকণার ওপর $m \mu r^{-3}$ পরিমাণ কেন্দ্রাভিমুখী বল ক্রিয়া করে। কণাটি যদি c দূরত্বে অবস্থিত apse থেকে $\frac{3 \sqrt{5 \mu}}{5 c}$ বেগে প্রক্ষিপ্ত হয়, তাহলে প্রমাণ করো যেে কণাটির কক্ষপথের সমীকরণ হবে $r \cos \frac{2 \theta}{3}=c$ ।

8। সমতলীয় বর্ররেখায় চলমান একটি কণার ত্বরণের স্পর্শক এবং অভিলম্ব উপাংশ নির্ণয় করো। ১০
৫। প্রমাণ করো যে, একটি সমতলে গতিশীল m_{1} ও m_{2} ভরবিশিষ্ট দুটি কণার গতিশক্তি হয় $\frac{1}{2}\left(m_{1}+m_{2}\right) u^{2}+\frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}} v^{2}$, যেখানে u হ.লো কণাদ্বয়ের ভরকেন্দ্রের গতিবেগ এবং v হুলো তাদের আপেক্ষিক গতিবেগ।

৬। একটি বস্তুকণা $y=c \cos h \frac{x}{c}$ ক্যাটিনারী বক্রপপথে গতিশীল হয় এরূপ বলের অধীনে, যা সর্বদাই y-অক্ষের ধনাত্মক দিকের সঙ্গে সমান্তরাল। বলের সূত্রটি নির্ণয় করো।

१। কোনো কণা $\mu \times(\text { দূরত্ব })^{-2}$ এই কেন্দ্রীয় ত্বরণ দ্বারা গতিশীল। কণাটিকে R দূরত্ব থেকে V গতিবেগে উৎক্ষেপ করা হয়েছে। কণাটির গতিপথ সমপরাবৃত্ত হলে, দেখাও যে প্রক্ষেপ কোণ, $\sin ^{-1}\left[\frac{\mu}{V R\left(V^{2}-\frac{2 \mu}{R}\right)^{\frac{1}{2}}}\right]$ ।

৮। যদি V_{1} এবং V_{2} একটি গ্রহের রৈখিক বেগ হয় যখন গ্রহটির সূর্य থেকে দূরত্ব সর্বনিম্ন এবং সর্বোচ্চ, তরে প্রমাণ করো যে, $(1-e) V_{1}=(1+e) V_{2}$ যেখানে e रলো গ্রহটির কক্ষপথের উৎকেন্দ্রতা।

৯। পৃথিবীর আকর্যণকে ধ্রুবক ধরে, পৃষ্ঠতল থেকে কোনো বস্তুকণাকে V গতিবেগে উল্লম্বভাবে প্রক্ষেপ কররে বস্তুটি ‘ h ’ উচ্চতায় পপৗঁছায়। পৃথিবীর আকর্যণ পরিবর্তনশীল হলে অনুরূপ উচ্চতা ' H ' হয়। প্রমাণ করো, $\left(\frac{1}{h}-\frac{1}{H}\right)=\frac{1}{R}$ (R হলো পৃথিবীর ব্যাসার্ধ)।

১০। একটি কণা ' a ’ ব্যাসার্ধের একটি বৃত্তে এরূপে গতিশীল যে কণাটির স্পর্শক বরাবর ত্বরণ, অভিলম্ব বরাবর ত্বরনের K গুণ (যেখানে K একটি ধ্রুবক)। যদি কোনো বিন্দুতে কণাটির দ্রুতি u হয়, তবে দেখাও যে ওই বিন্দুতে এটি পুনরায় ফিরে আসবে $\frac{a}{K u}\left(1-e^{-2 \pi K}\right)$ সময় পরে।

[English Version]

The figures in the margin indicate full marks.

Multiple Choice Questions

1. Answer all questions :
(a) The work done by gravity on a stone of mass 80 gms during the 8 th second of its fall from rest is [$\mathrm{g}=980 \mathrm{~cm} / \mathrm{sec}^{2}$]
(i) 588000 ergs
(ii) 5880 ergs
(iii) 588 ergs
(iv) None of these.
(b) If the velocity v of a particle moving in a straight line is given by $v^{2}=a x^{2}+b$, where x is the distance travelled from a fixed point on the line and a, b are constants, the acceleration varies as
(i) x
(ii) x^{2}
(iii) $\frac{1}{x}$
(iv) $\frac{1}{x^{2}}$.
(c) If the time t be regarded as function of velocity v, then the rate of decrease of acceleration f is
(i) $f^{3} \frac{d^{2} t}{d v^{2}}$
(ii) $f^{3} \frac{d^{3} t}{d v^{3}}$
(iii) $f^{2} \frac{d^{3} t}{d v^{3}}$
(iv) None of these.
(d) The period of oscillation of simple harmonic motion is given by
(i) $T=\frac{\pi}{\sqrt{\mu}}$
(ii) $T=\frac{\pi}{2 \sqrt{\mu}}$
(iii) $T=\frac{2 \pi}{\sqrt{\mu}}$
(iv) $T=\frac{\pi}{\sqrt{2 \mu}}$.
[The symbols used have their usual meanings]
(e) For a particle describing a central orbit under $F=\mu r$, the velocity acquired by the particle in falling from rest at a given distance r from the centre of force to the centre is
(i) $v_{0}^{2}=\mu r^{2}$
(ii) $v_{0}^{2}=\mu r$
(iii) $v_{0}^{2}=\frac{\mu}{r^{2}}$
(iv) $v_{0}^{2}=\frac{\mu}{r}$.
(f) The speed v of a particle moving along x-axis is given by $v^{2}=16-x^{2}$. Then the amplitude of motion is
(i) 2 units
(ii) 1 unit
(iii) $\frac{1}{2}$ unit
(iv) $\frac{3}{2}$ units.
(g) Which of the following is scalar?
(i) Displacement
(ii) Speed
(iii) Velocity
(iv) None of these.
(h) If u and v be the components of velocity of a particle at a point P parallel to the axis at time t, then the components of acceleration parallel to the axes are
(i) $u \frac{d u}{d x}, v \frac{d v}{d y}$
(ii) $\frac{d u}{d x}, \frac{d v}{d y}$
(iii) $u \frac{d v}{d y}, v \frac{d u}{d x}$
(iv) None of these.
(i) A particle describes a circle of radius a with uniform speed v. At any instant the normal acceleration is
(i) $\frac{v^{3}}{a}$
(ii) $\frac{v}{a}$
(iii) $\frac{v^{2}}{a}$
(iv) $\frac{v^{2}}{a^{2}}$.
(j) If the angular velocity of a moving point about a fixed origin be constant, then the transverse velocity is given by which of the following?
(i) Transverse velocity varies as radial velocity.
(ii) Transverse velocity varies as square of radial velocity.
(iii) Transverse velocity is constant.
(iv) Transverse velocity varies as cube of radial velocity.

Answer any one question.
2. (a) A particle describes the path $r^{4}=a^{4} \cos 4 \theta$ under a force which is always directed to the pole. Find the law of force.
(b) A particle is moving in a straight line with an acceleration $n^{2} x$ towards a fixed origin on the line and is simultaneously acted on by a periodic force $F \cos p t$ per unit mass. Discuss the motion when $n \neq p$.

Answer any five questions.

3. (a) Define apse and apsidal distance.
(b) A particle of mass m moves under a central attractive force $m \mu r^{-3}$ and is projected from an apse at a distance c with velocity $\frac{3 \sqrt{5 \mu}}{5 c}$. Prove that the orbit of the particle is $r \cos \frac{2 \theta}{3}=c . \quad 2+8$
4. Find the radial and cross radial components of velocity and acceleration of a particle moving in a plane.
5. Prove that the kinetic energy of two particles of masses m_{1} and m_{2} moving in a plane is $\frac{1}{2}\left(m_{1}+m_{2}\right) u^{2}+\frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}} v^{2}$, where u is the velocity at the center of mass of the particles and v is the velocity of either of them relative to the other.
6. A particle describes the catinary $y=c \cos h \frac{x}{c}$ under a force which is always parallel to the positive direction of y-axis. Find the law of force.
7. A particle moves with a central acceleration $\mu \times(\text { distance })^{-2}$. It is projected with velocity V at a distance R. Show that if the path is a rectangular hyperbola, then the angle of projection is

$$
\begin{equation*}
\sin ^{-1}\left[\frac{\mu}{V R\left(V^{2}-\frac{2 \mu}{R}\right)^{\frac{1}{2}}}\right] \tag{10}
\end{equation*}
$$

8. If V_{1}, V_{2} are the linear velocities of a planet when it is respectively at nearest and farthest from the Sun, prove that $(1-e) V_{1}=(1+e) V_{2}$, where e is the eccentricity of the orbit of the planet.
9. If h be the height attained by a particle when projected vertically upwards with a velocity V from the earth's surface supposing its attraction to be constant, and H be the corresponding height when variation of gravity is taken into account, prove that $\left(\frac{1}{h}-\frac{1}{H}\right)=\frac{1}{R}$, where R is the radius of the earth. 10
10. A particle is describing a circle of radius a in such a way that its tangential acceleration is K times the normal acceleration of the particle, where K is a constant. If the speed of the particle at any point be u, prove that it will return to the same point after a time $\frac{a}{K u}\left(1-e^{-2 \pi K}\right)$.
