T(5th Sm.)-Mathematics-G/DSE-A-2/CBCS/Day-3

2020

MATHEMATICS — GENERAL

Paper : DSE-A-2

(Graph Theory)

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Day 3

1.	Choose	the	correct	answer(s	s)	from	the	given	options	:

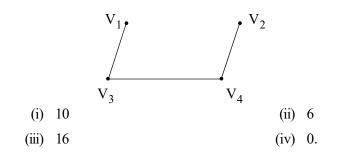
- (a) Which of the following statement for a simple graph is correct?
 - (i) Every path is a trail.
 - (ii) Every trail is a path.
 - (iii) Every path is a trail as well as every trail is a path.
 - (iv) Path and trail have no relation.
- (b) In the given graph identify the cut vertices.

(c) A connected planar graph having 6 vertices, 7 edges contains _____ regions.

- (i) 15 (ii) 3
- (iii) 1 (iv) 11

Please Turn Over

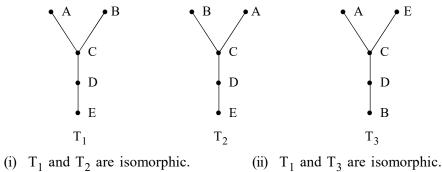
1×10

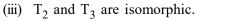

T(5th Sm.)-Mathematics-G/DSE-A-2/CBCS/Day-3 (2)

(d) What is the number of edges present in a complete graph having n vertices?

(i)
$$\frac{n (n+1)}{2}$$
 (ii) $\frac{n (n-1)}{2}$
(iii) n (iv) None of the above.

(e) What is the maximum number of edges in a bipartite graph having 10 vertices?

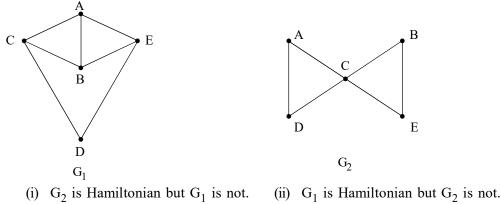

(f) What would be the number of zeros in the adjacency matrix of the given graph?



(g) Which of these adjacency matrices represents a simple graph?

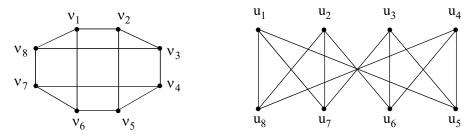
(i)	$ \left(\begin{array}{rrrr} 1 & 0\\ 0 & 1\\ 0 & 1 \end{array}\right) $	$\left(\begin{array}{c}0\\0\\1\end{array}\right)$	(ii) ($\begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}$	1 1 1	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
(iii)	$\left(\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right)$	$\left(\begin{array}{c}1\\0\\1\end{array}\right)$	(iv)	(0 1 1	0 0 0	$\left. \begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right).$

(h) Among the following three trees T_1 , T_2 and T_3

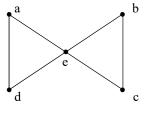


- (iv) T_1 , T_2 , T_3 are isomorphic.

(3)


T(5th Sm.)-Mathematics-G/DSE-A-2/CBCS/Day-3

(i) For the following two graphs G_1 and G_2

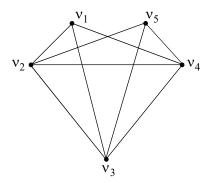


- (iii) Both G_1 and G_2 are Hamiltonian. (iv) None of G_1 and G_2 is Hamiltonian.
- (j) Dijkstra's Algorithm is applicable to the weighted graph with
 - (ii) both positive and negative weights. (i) positive weights only.
 - (iv) none of the above. (iii) negative weights only.
- 2. Answer any three of the following questions :
 - (a) Draw the graph whose adjacency matrix is given by

(b) Are the following two graphs isomorphic? Justify your answer.

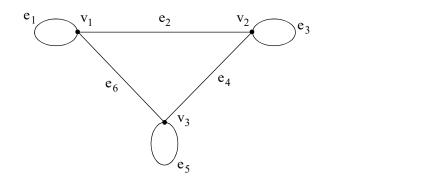
(c) Draw all the spanning trees of the graph :

Please Turn Over

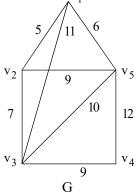


5

5

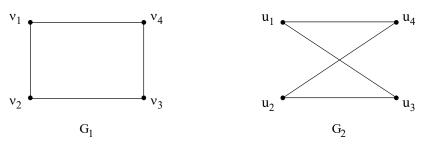

T(5th Sm.)-Mathematics-G/DSE-A-2/CBCS/Day-3 (4)

(d) What is a planar graph? Is the following graph planar? Justify your answer.



1+4

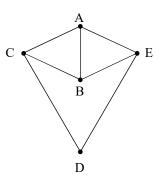
- (e) Show that a graph with n vertices, (n 1) edges and no circuits is connected.
- 3. Answer any four questions :
 - (a) (i) Show that there is no simple graph with six vertices of which the degrees of five vertices are 5, 5, 3, 2 and 1.
 - (ii) Prove that a connected graph with n vertices is a tree if and only if it has (n 1) edges.
 - (iii) Find an Euler circuit, if it exists, in the following graph.


- (b) (i) Prove that a graph is connected if and only if it contains a spanning tree.
 - (ii) Find a minimal spanning tree of the following connected weighted graph G by applying Kruskal's algorithm.

3+7

2+5+3

- (5) (7(5th Sm.)-Mathematics-G/DSE-A-2/CBCS/Day-3
- (c) (i) What is a planar graph?
 - (ii) Let G be a connected planar graph with V vertices, E edges and R regions. Then show that V E + R = 2.
 - (iii) Show that $K_{3,3}$ is not a planar graph.
- (d) (i) Show that the following two graphs G_1 and G_2 are isomorphic.

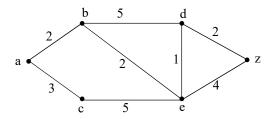

(ii) If A_1 and A_2 are adjacency matrices of G_1 and G_2 respectively, then show that there exists a permutation matrix P so that

 $P A_1 P^t = A_2$ where P^t is the transpose of P.

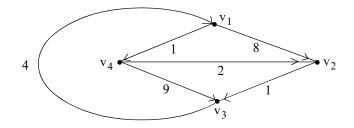
3+7

1+5+4

- (e) (i) What is Hamiltonian cycle and Hamiltonian graph?
 - (ii) Is the following graph Hamiltonian? Justify.



(iii) If a graph G has $n \ge 3$ vertices and every vertex has degree at least $\frac{n}{2}$, then show that G is Hamiltonian. 2+3+5


Please Turn Over

T(5th Sm.)-Mathematics-G/DSE-A-2/CBCS/Day-3 (6)

(f) Apply Dijkstra's algorithm to find the length and shortest path between a and z in the following weighted graph. 10

(g) Consider the following directed weighted graph.

Use Floyed–Warshall algorithm to find the shortest path distance between every pair of vertices. 10