2020

PHYSICS - GENERAL

Paper : DSE-A-2

(Modern Physics)
Full Marks : 65
Candidates are required to give their answers in their own words as far as practicable.
প্রান্তলিখিত সংখ্যগুলি পূণমান নির্দেশক।

Day 3

১নং প্রশ্স ও ২নং প্রশ্ন এবং অন্য যে-কোনো চারটি প্রশ্নের উত্তর দাও।

১। যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও:
(ক) $40 \mathrm{~W}, 600 \mathrm{~nm}$ তরभ্গদ̆র্ঘ্যের একটি উৎস থেকে প্রতি সেকেড্ডে কতগুলি ফোটন নির্গত হয় ?
(খ) 1000 V বিভব-প্রভেদে ত্বরিত একটি ইলেক্ট্রনের সাথে সংশ্লিষ্ট ডি-ব্রয় তরঙ্দদদর্ঘ্য নির্ণয় করো। প্রদত্ত, ইলেকট্র্রনের ভর $=9.1 \times 10^{-31} \mathrm{~kg}$ ।
(গ) একটি ইলেকট্র্রন $1 \AA$ রৈখিক মাত্রার স্থানে সীমাবদ্ধ। এটির রৈখিক ভররেরের অনিশচয়তার ন্যূনতম মান কী?
(ঘ) দেখাও যে $\psi(x)=A \exp (i k x)(A=$ ধ্রুবক) ররখিক ভরবেগ সংকারকের একটি আইগেন-অপেক্ষক। সংশ্লিষ্ট আইগেনমানটি কী?
(ঙ) নিশ্তল অবস্থা বলতে কী বোরো? $\psi(x, t)=A \exp \left(-\alpha x^{2}-i k t\right)$ অপেকককটি কি একটি নিশ্ড অবস্থা নির্দেশ করে? দেওয়া আছে, k একটি বাস্তব সংখ্যা।
(চ) আপেক্ষিকতার বিশেয তত্ত্রের স্বীকার্যগুলি বিবৃত করো।
(ছ) তিন-স্তরের এবং চার-স্তরের লেজার সিস্টেমগুলির প্রত্যেকটির একটি করে উদাহরণ দাও।
২। যে-কোনো তিনটি প্রক্নের উত্তর দাও :
৫×৩
(ক) আইনস্টাইনের আলোকতড়িৎ সমীকরণটি লেখো এবং কীভাবে এটি আলোকতড়িৎ ক্রিয়ার বৈশিষ্টগগুলি ব্যাখ্যা করে তা আলোচনা করো।
(খ) কোয়ান্টাম বলবিদ্যায় সম্ভাবনার জন্য এক মাত্রার সন্ততার সমীকরণটি নির্ণয় করো। নিশ্চল অবস্থার জন্য এই সমীকরণটি কীভাবে রূপান্তরিত হবে?
(গ) দেখাও যেে রৈখিক ভরবেগ সংকারক একটি হার্মিশিয়ান সংকারক। যদি \hat{x} এবং \hat{p} যথাক্রুদ্ম অবস্থান এবং ভরবেগ সংকারক নির্দেশ করে, তাহলে দেখাও যে $\hat{x} \hat{p}+\hat{p} \hat{x}$ একটি হার্মিশিয়ান সংকারক।
(ঘ) $E^{2}=p^{2} c^{2}+m_{0}^{2} c^{4}$ সম্পর্কটি প্রতিষ্ঠা করো, যেখানে প্রতীকগুলি স্বাটাবিক অর্থ বহন করে। কোনো ফোটনের শক্তি এবং ররখিক ভরবেগের মধ্যে সম্পর্ক কী?
(ঙ) কণাসংখ্যা উৎক্রমণ বলতে कী বোরো ? দেখাও যেে লেজার ক্রিয়ার জন্য কণাসংখ্যা উৎক্রমণ একটি প্রয়োজনীয় শর্ত।
৩। (ক) দেখাও যে একটি মুক্ত ইলেকট্র্রন দ্বারা বিক্ষিপ্ত হওয়ার কারণে কোনো ফোটনের তররদ্গদৈর্ঘ্যের পরিবর্তন

$$
\Delta \lambda=\lambda_{c}(1-\cos \theta)
$$

যেখানে λ_{c} হল কশ্পটন তরঙদদর্ঘ্য এবং θ হল বিক্ষেপণ কোণ। λ_{c}-এর সাংখ্যমান নির্ণয় করো, প্রদত্ত ইলেকট্রন্নের ভর $=9.1 \times 10^{-31} \mathrm{~kg}$ ।
(খ) সোডিয়ামের আলোকতড়িৎ কার্য-অপেকককক 2.7 eV । আলোকতড়িৎ নির্গমনের জন্য সূচনা-কস্পাক্ক এবং সূচনা তরগ্দদদর্য্য হিসাব করো।
(গ) ডেভিসন-গার্মার পরীক্ষার গুরুত্ব ব্যাখ্যা করো।
8। (ক) বস্তুতরঙ্গের দশা-বেগ এবং গুচ্-বেগের মব্যে সম্পর্কটি নির্ণয় করো। দেখাও যে, বস্তুতরগ্গের গুচ্ছ-বেগ কণাটির বেগের সাথে সমান।
(খ) অনিশ্যয়তা-নীতি বোরের কক্ষপতের ধারণা প্রত্যাখ্যান করতে আমাদের বাধ্য করে।— ব্যাখ্যা করো।
(গ) কোয়ান্টাম বলবিদ্যায় রৈরিক উপরিপাতের নীতিটি কী?
৫। (ক) একটি তন্ত্র নিন্নলিখিত তরঙ্গরূপের সাহয্যে বিবৃত:

$$
\begin{aligned}
\psi(x) & =A \sin \frac{n \pi x}{l}, & & 0 \leq x \leq l \\
& =0, & & \text { অन्गথVয়। }
\end{aligned}
$$

(অ) স্বাভাবিক-করণ ধ্রুবক A-র মান নির্ণয় করো।
(অা) তষ্ত্রটির অবস্থান এবং রৈথিক ভররেরের প্রত্যাশা-মানগেলি $(\langle x\rangle,\langle p\rangle)$ নির্ণয় করো।
(খ) প্রমাণ করো :

$$
\frac{d}{d t}\langle x\rangle=\frac{\langle p\rangle}{m}
$$

যেখানে প্রতীকগুলি প্রচলিত অর্থে ব্যবহৃত।
৬। (ক) একটি কণা x-অক্ষ বরাবর নিম্ন শর্ত অনুযায়ী সীমাবদ্ধ :

$$
\psi(x)=\left\{\begin{array}{cl}
5-x, & \text { যখन } 0 \leq x \leq 1 \\
0, & \text { जन्যथाয় }
\end{array}\right.
$$

$x=0.42$ থেকে $x=0.54$ সীমায় সংস্থাটির সম্ভাবনা ও সংস্থাটির x-এর প্রত্তাশা মান নির্ণয় করো।
(খ) তরঙ্গ-গতিবিদ্যার মূল স্বীকার্যগলি বিবৃত করো।

৭। (ক) L_{0} সঠিক দৈর্ঘ্যের একটি দণ কোনো এক জড়ত্বীয় নির্দেশত大্ত্রের সাপেক্ষে v সমবেগে গতিশীল। প্রমাণ করো যে ওই জড়ত্বীয় তন্ত্রে দণ্ডটির পরিবর্তিত দৈর্ঘ্য

$$
L=L_{0} \sqrt{1-v^{2} / c^{2}}
$$

যেখানে c হল শূন্যমাধ্যমে আলোর বেগ।
(খ) $0.95 c$ বেগে গতিশীল μ-নেসনের পরিমিত গড় জীবনকাল 6×10^{-6} সেকেন্ড। μ-নেসনের স্থির নির্দেশতন্ত্রে গড় জীবনকাল হিসাব করো। দেওয়া আছে $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ ।
(গ) বিশেষ আপেক্ষিকতাবাদের আইনস্ট|ইনের বেগ সংযোজন উপপাদ্যটি প্রতিষ্ঠা করো।
৮। (ক) আইনস্ট|ইনের A এবং B গুণাঙ্কের মধ্যে সম্পর্ক নির্ণয় করো।
(খ) 2000 K তাপমাত্রা এবং 550 nm তরঙ্গদৈর্ঘ্যের একটি বাতির স্বতঃঃ্ফূর্ত নিঃসরণের হার এবং উদ্দীপিত নিঃসরণের হারের অনুপাত নির্ণয় করো। বাতিটি কি সুসঙ্গত আলো উৎপাদন করে? ব্যাখ্যা করো।
(গ) স্বঞ্প-সুস্থিত অবস্থা বলতে কী বোঝো ? স্বঞ্প-সুস্থিত অবস্থার সাধারণ জীবনকাল কী ?

[English Version]

The figures in the margin indicate full marks.
Answer question nos. 1, 2 and any four more questions from the rest.

1. Answer any five questions:
(a) How many photons does a 40 W source of light at wavelength 600 nm emit per second?
(b) Find the de Broglie wavelength associated to an electron accelerated to a potential difference of 1000 V . Given, the mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$.
(c) An electron is confined in a space of linear dimension $1 \AA$. What is the minimum uncertainty in its linear momentum?
(d) Show that $\psi(x)=A \exp (i k x)(A=$ constant $)$ is an eigenfunction of the linear momentum operator. What is the corresponding eigenvalue?
(e) What do you mean by stationary state? Does the state $\psi(x, t)=A \exp \left(-\alpha x^{2}-i k t\right)$ represent a stationary state? Given, k is a real number.
(f) State the postulates of special theory of relativity.
(g) Give an example of each of a three-level and four-level laser system.
2. Answer any three questions:
(a) Write down Einstein's photoelectric equation and discuss how it explains the characteristics of photoelectric effects.
(b) Derive the equation of continuity in one dimension for the probability in quantum mechanics. How will this equation reduce for a stationary state?

Please Turn Over
(c) Show that the linear momentum operator is a Hermitian operator. If \hat{x} and \hat{p} respectively represent the position and momentum operators, show that $\hat{x} \hat{p}+\hat{p} \hat{x}$ is a Hermitian operator.
(d) Establish the relation $E^{2}=p^{2} c^{2}+m_{0}^{2} c^{4}$, where the symbols have their usual significances. How are the energy and linear momentum of a photon related?
(e) What do you mean by the term population inversion? Show that population inversion is the necessary condition for lasing action.
3. (a) Show that the shift in wavelength of a photon due to scattering by a free electron is given by

$$
\Delta \lambda=\lambda_{c}(1-\cos \theta)
$$

where λ_{c} is the Compton wavelength and θ is the angle of scattering. Calculate the numerical value of λ_{c}, given the mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$.
(b) The photoelectric work function of sodium is 2.7 eV . Find the threshold frequency and threshold wavelength for photoelectric emission.
(c) Explain the importance of Davisson-Germer experiment.
4. (a) Derive the relation between phase velocity and group velocity of matter waves. Show that the group velocity of matter wave is same as the velocity of the particle.
(b) Uncertainty principle forces us to reject the idea of Bohr's orbit.- Explain.
(c) What is the linear superposition principle in quantum mechanics?
5. (a) A system is described by the following wave function:

$$
\begin{aligned}
\psi(x) & =A \sin \frac{n \pi x}{l}, & & 0 \leq x \leq l \\
& =0, & & \text { otherwise. }
\end{aligned}
$$

(i) Find the normalization constant A.
(ii) Find the expectation values of position $(\langle x\rangle)$ and linear momentum $(\langle p\rangle)$ of the system.
(b) Prove that

$$
\frac{d}{d t}\langle x\rangle=\frac{\langle p\rangle}{m}
$$

where the symbols have their usual meanings.
6. (a) A particle is bound to x axis with the following condition

$$
\psi(x)=\left\{\begin{array}{cl}
5-x, & 0 \leq x \leq 1 \\
0, & \text { otherwise } .
\end{array}\right.
$$

Calculate the probability density between the limit $x=0.42$ to $x=0.54$. Also calculate the expectation value of x.
(b) Write down the basic postulates of wave mechanics.
7. (a) A rod of proper length L_{0} is moving uniformly with velocity v along its length with respect to an inertial frame of reference. Show that the length measured in that inertial frame is

$$
L=L_{0} \sqrt{1-v^{2} / c^{2}}
$$

where c is the speed of light in vacuum.
(b) The average lifetime of μ-mesons with a speed of 0.95 c is measured to be $6 \times 10^{-6} \mathrm{sec}$. Calculate the average lifetime of μ-mesons in its rest frame. Given $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
(c) Derive Einstein's velocity addition theorem in special theory of relativity.
8. (a) Derive the relation between Einstein's A and B coefficients.
(b) Find the ratio of the rate of spontaneous emission to the rate of stimulated emission by a bulb at temperature 2000 K at wavelength 550 nm . Does the bulb produce coherent light? Explain.
(c) What do you mean by metastable state? What is the typical lifetime of metastable states?

