# PHYSICS-HONOURS-PRACTICAL 

## Paper: CC-11-P

## Full Marks-30

Answer any one question.
[Write the code in pen and paper only. No computer output or plot is required.]

1. i) Solve stationary state one dimensional time independent Schrodinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x)
$$

for a particle moving under the potential of a quantum harmonic oscillator $V(x)=\frac{1}{2} k x^{2}$. Necessary conversions can be made. Obtain the energy eigenvalues and plot the wavefunctions of ground state and first two excited states.
Program: 10, Algorithm: 3
ii) Solve the radial part of time independent Schrodinger equation

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}+\frac{\hbar^{2} l(l+1)}{2 m r^{2}}+V(r)\right] U(r)=E U(r)
$$

for a particle moving under the influence of Yukawa potential $V(r)=-V_{0} \frac{e^{-a r}}{r}$. Necessary conversions can be made. Obtain the energy eigenvalues and plot the wavefunctions of $1 \mathrm{~s}, 2 \mathrm{~s}$ and 2 p orbitals.
Program: 14, Algorithm: 3
2. i) Solve stationary state one dimensional time independent Schrodinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x)
$$

for a particle moving under the Morse potential $V(x)=D_{e}\left(1-e^{-\beta\left(x-x_{e}\right.}\right)^{2}$. Necessary conversions can be made. Obtain the energy eigenvalues and plot the wavefunctions of ground state and first two excited states.

Program: 10, Algorithm: 3
ii) Solve the radial part of time independent Schrodinger equation

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}+\frac{\hbar^{2} l(l+1)}{2 m r^{2}}+V(r)\right] U(r)=E U(r)
$$

for the Hydrogen atom potential $V(r)=-\frac{e^{2}}{4 \pi \epsilon_{0} r}$. Obtain the energy eigenvalues and plot the wavefunctions of $1 \mathrm{~s}, 2 \mathrm{~s}$ and 2 p orbitals.

Program: 14, Algorithm: 3
-----End of question paper-----

