5×50

2020

MATHEMATICS — GENERAL

Paper : GE/CC-3

Full Marks : 65

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পুর্ণমান নির্দেশক।

>। নিম্নলিখিত প্রশ্নগুলির উত্তর দাও ঃ

 $(\bar{\mathfrak{r}}) \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx - \mathfrak{a} \mathfrak{R} \ \text{Im} \quad \overline{\mathfrak{r}} \mathfrak{r}$ $(\bar{\mathfrak{r}}) 1 \qquad (\bar{\mathfrak{r}}) \frac{1}{4} \qquad (\bar{\mathfrak{r}}) \pi \qquad (\bar{\mathfrak{r}}) \frac{\pi}{4} + (\bar{\mathfrak{r}}) + \mathfrak{a} \mathfrak{r} + 1 \qquad (\bar{\mathfrak{r}}) - 1 \qquad (\bar{\mathfrak{r})} - 1 \qquad (\bar{\mathfrak{r}}) - 1 \qquad (\bar{\mathfrak{r})} - 1 \qquad (\bar{\mathfrak{r}) - 1 \qquad (\bar{\mathfrak{r})} - 1 \qquad (\bar{\mathfrak{r})} - 1 \qquad (\bar{\mathfrak{r})} - 1$

Please Turn Over

২। *যে-কোনো তিনটি* প্রশ্নের উত্তর দাও ঃ

(2)

(চ) f(x) = 0 সমীকরণটি সমাধান করার ক্ষেত্রে Newton-Raphson পদ্ধতি ব্যর্থ হবে, যখন (a) f'(x) = -2 (b) f'(x) = 0 (c) f''(x) = 0 (c) f''(x) = 0 (c) f''(x) = 1(ছ) কোনো রৈখিক প্রোগ্রামিং সমস্যাতে (LPP) যার চরম বা অবম মান নির্ণয় করা হয়, তা হল (অ) শর্ত সীমাবদ্ধতা (Constraints) (আ) বিষয়াত্মক অপেক্ষক (ঈ) এদের কোনোটিই নয়। (ই) চলরাশি জ) $2x_1 - 5x_2 + x_3 + 2x_4 = 4$, $3x_1 - 10x_2 + 2x_3 + 4x_4 = 14$ সহসমীকরণ-এর মৌল চলরাশির সংখ্যা হল (আ) 2 (ই) 3 (ঈ) 4। (অ) 1 (ঝ) কোনটি উত্তল নয় পরীক্ষা করো ঃ (আ) $X = \{(x, y) | x^2 + y^2 \ge 1 \text{ arg} x^2 + y^2 \le 2\}$ (আ) $X = \{(x, y) | 4x^2 + 9y^2 \le 36\}$ $(\overline{\mathfrak{Z}}) \quad X = \left\{ (x, y) \mid y^2 \ge 4x \right\}$ $(\overline{\mathfrak{A}}) \quad X = \{(x, y) \mid x \ge 2, y \le 3, x, y \ge 0\}$ (এঃ) $S = \{(x, y) | x^2 + y^2 \le 25\}$ সেট্টির প্রান্তবিন্দুগুলি হল (অ) বৃত্তটির ভিতরের বিন্দু (আ) বৃত্তটির ওপরের বিন্দ (ই) বৃত্তটির বাইরের বিন্দু (ঈ) বৃত্তটির ব্যাসের ওপরের বিন্দু।

ইউনিট - ১

(সমাকলন বিদ্যা)

(ক) দেখাও যে $\int_{0}^{\frac{\pi}{2}} \log \sin x \, dx = \frac{\pi}{2} \log \left(\frac{1}{2}\right)$ (খ) যদি $I_n = \int_{0}^{\frac{\pi}{4}} \tan^n x \, dx$ হয়, তবে দেখাও যে $I_{n+1} - I_{n-1} = \frac{1}{n}$ এই সম্পর্কটি ব্যবহার করে মান নির্ণয় করো : $\int_{0}^{\frac{\pi}{4}} \tan^8 x \, dx$ ৩+২

(গ) মান নির্ণয় করো ঃ
$$\lim_{n \to \infty} \left\{ \left(1 + \frac{1^2}{n^2} \right) \left(1 + \frac{2^2}{n^2} \right) \dots \left(1 + \frac{n^2}{n^2} \right) \right\}^{\frac{1}{n}}$$

(ঘ) Beta-অপেক্ষক-এর সংজ্ঞা প্রয়োগ করে প্রমাণ করো যে
$$\int_{0}^{\pi/2} \cos^4 x \, dx = \frac{3\pi}{16}$$
। ৫

(ঙ) মান নির্ণয় করো ঃ
$$\int_{0}^{1} \frac{dx}{(1-x^6)^{\frac{1}{6}}}$$
 । ৫

ইউনিট - ২

(সাংখ্যিক পদ্ধতি))

৩। যে-কোনো চারটি প্রশের উত্তর দাও ঃ

(ক)
$$h = 1$$
 ধরে দেখাও যে $\left(\frac{\Delta^2}{E}\right) x^3 = 6x$ |

(খ) 0, $\frac{1}{6}$, $\frac{1}{2}$ বিন্দুগুলির সাহায্যে $y = \sin \pi x$ অপেক্ষকের জন্য অন্তঃমান-বহুপদী রাশিমালাটি নির্ণয় করো।

(গ)
$$f(-2) = 7, f(0) = 1, f(3) = 7$$
 হলে $f(10)$ -এর মান কত $g(10)$ - $g(10)$ -

(ঘ) Simpson-এর এক-তৃতীয়াংশ নিয়মে ছয়টি উপঅন্তরাল নিয়ে তিন দশমিক স্থান পর্যন্ত আসন্নমানে সমাকলন করো ঃ

$$\int_{0}^{1} \frac{dx}{\left(1+x\right)^2}$$

(ঙ) নিউটনের পশ্চাদসারি অন্তঃমান নির্ণয়ের সূত্রের সাহায্যে নিম্নলিখিত সারণি থেকে y-এর মান নির্ণয় করো, যখন x=7 ঃ

x	2	4	6	8
y	5	17	39	58

- (চ) Newton–Raphson পদ্ধতি ব্যবহার করে এবং x₀ = 2 ধরে সমীকরণ x³ 2x 5 = 0-এর তিন সার্থক অঙ্ক পর্যন্ত একটি ধনাত্মক বীজ নির্ণয় করো।
- (ছ) সমদ্বিখণ্ডন (Bisection) পদ্ধতি ব্যবহার করে $e^x = 4 \sin x$ সমীকরণের ক্ষুদ্রতম ধনাত্মক বীজ (চার দশমিক স্থান পর্যন্ত) নির্ণয় করো।

Please Turn Over

œ×8

Č

(3)

(4)

ইউনিট - ৩

(রৈখিক প্রোগ্রামিং)

- 8। যে-কোনো চারটি প্রশ্নের উত্তর দাও ঃ
 - (ক) প্রমাণ করো দুটি উত্তল সেটের প্রতিচ্ছেদও (intersection) একটি উত্তল সেট। এই সিদ্ধান্ত (result) কি দুটি উত্তল সেটের সংযোগের ক্ষেত্রেও সত্যি ? যুক্তি দাও। ৩+২
 - (খ) লেখচিত্রের সাহায্যে সমাধান করো ঃ

চরম
$$Z = x_1 + 0.5x_2$$

যোখানে $3x_1 + 2x_2 \le 12$
 $5x_1 = 10$
 $x_1 + x_2 \ge 8$
 $-x_1 + x_2 \ge 4$
 $x_1, x_2 \ge 0$

- (গ) প্রমাণ করো যে একটি রৈখিক প্রোগ্রামিং সমস্যাতে বিষয়াত্মক অপেক্ষকটি চরম মান গ্রহণ করে ওই সমীকরণ সমূহের কার্যকর সমাধান দ্বারা গঠিত উত্তল সেটের প্রান্তিক বিন্দু।
- (ঘ) (2, 1, 3) হল নিম্নলিখিত সমীকরণ সমূহের একটি কার্যকর সমাধান ঃ

$$4x_1 + 2x_2 - 3x_3 = 1,$$

$$6x_1 + 4x_2 - 5x_3 = 1$$

ওই কার্যকর সমাধানকে মৌল কার্যকর সমাধানে রূপান্তরিত করো।

(৬) নিম্নলিখিত রৈখিক প্রোগ্রামিং সমস্যাটি Penalty পদ্ধতির সাহায্যে সমাধান করো ঃ

চরম
$$Z = 3x_1 - x_2$$

যোখানে $2x_1 + x_2 \ge 2$
 $x_1 + 3x_2 \le 3$
 $x_2 \le 4$ এবং $x_1, x_2 \ge 0$

(চ) নিম্নলিখিত পরিবহন সমস্যাটির চরম সমাধান এবং সংশ্লিষ্ট পরিবহন খরচ নির্ণয় করো ঃ

8+5

	D_1	D_2	<i>D</i> ₃	a_i
O_{l}	10	9	8	8
02	10	7	10	7
03	11	9	7	9
04	12	14	10	4
b_j	10	10	8	

Ć

ć

Č

(5)

(ছ) নিম্নলিখিত আরোপ সমস্যাটির অনুকূল নিয়োগ (optimal assignment) নির্ণয় করো এবং সর্বনিম্ন খরচ নির্ণয় করো ঃ ৪+১

	Ι	Π	III	IV
A	5	3	1	8
В	7	9	2	6
С	6	4	5	7
D	5	7	7	6

[English Version]

The figures in the margin indicate full marks.

1. Answer *all* the questions :

(a)	Value of $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{x}}$	$\frac{1}{\sqrt{\cos x}} dx$ is				
	(i) 1	(ii) $\frac{1}{4}$	(iii)	π	(iv)	$\frac{\pi}{4}$.
(b)	Value of $\Delta\left(\frac{1}{x-1}\right)$ ta	sking $h = 1$ is				
	(i) $\frac{1}{x}$	(ii) $\frac{1}{x-1}$	(iii)	$\frac{1}{x} + \frac{1}{x-1}$	(iv)	$\frac{1}{x} - \frac{1}{x-1}.$
(c)	The value of $\int_{-\pi}^{\pi} \sin^7 x$	x dx is				
	(i) π	(ii) 2π	(iii)	$\frac{\pi}{2}$	(iv)	0.
(d)	The value of $\int_{-\infty}^{\infty} e^{-x^2} dx$	dx is				
	(i) $\sqrt{\pi}$	(ii) $-\sqrt{\pi}$	(iii)	$\frac{\pi}{2}$	(iv)	0.
(e)	If 0.87652 is subtracted	ed from 0.87654, the	n the	loss of signifi	cant	figure is
	(i) 5	(ii) 1	(iii)	4	(iv)	0.

Please Turn Over

1×10

(f) Newton-Raphson method fails for solving f(x) = 0 when

(i)
$$f'(x) = -2$$
 (ii) $f'(x) = 0$ (iii) $f''(x) = 0$ (iv) $f''(x) = 1$.

- (g) In an LPP, we have to optimize the
 - (i) constraints (ii) objective function
 - (iii) variables (iv) none of these.
- (h) Number of basic variables of the system of equations $2x_1 - 5x_2 + x_3 + 2x_4 = 4$, $3x_1 - 10x_2 + 2x_3 + 4x_4 = 14$ is (i) 1 (ii) 2 (iii) 3 (iv) 4.
- (i) Examine which is not convex :
 - (i) $X = \{(x, y) | x^2 + y^2 \ge 1 \text{ and } x^2 + y^2 \le 2\}$
 - (ii) $X = \{(x, y) | 4x^2 + 9y^2 \le 36\}$
 - (iii) $X = \{(x, y) \mid y^2 \ge 4x\}$
 - (iv) $X = \{(x, y) \mid x \ge 2, y \le 3, x, y \ge 0\}$.

(j) The extreme points of the set $S = \{(x, y) | x^2 + y^2 \le 25\}$ are the points :

- (i) inside the circle (ii) on the circle
- (iii) outside the circle (iv) on the diameter.

Unit - 1

(Integral Calculus)

2. Answer any three questions :

π

(a) Show that
$$\int_{0}^{\pi/2} \log \sin x \, dx = \frac{\pi}{2} \log \left(\frac{1}{2}\right).$$
 5

(b) If
$$I_n = \int_0^4 \tan^n x \, dx$$
, show that $I_{n+1} - I_{n-1} = \frac{1}{n}$

Using this relation find the value of
$$\int_{0}^{\frac{\pi}{4}} \tan^{8} x \, dx \, . \qquad 3+2$$

(c) Find the value :
$$\lim_{n \to \infty} \left\{ \left(1 + \frac{1^2}{n^2} \right) \left(1 + \frac{2^2}{n^2} \right) \dots \left(1 + \frac{n^2}{n^2} \right) \right\}^{\frac{1}{n}}$$

(d) Using the definition of Beta function, prove that $\int_{0}^{\pi/2} \cos^4 x \, dx = \frac{3\pi}{16}.$ 5

(7)

(e) Find the value :
$$\int_{0}^{1} \frac{dx}{(1-x^6)^{\frac{1}{6}}}$$
. 5

Unit - 2 (Numerical Methods)

3. Answer any four questions :

(a) Show that
$$\left(\frac{\Delta^2}{E}\right)x^3 = 6x$$
, taking $h = 1$.

(b) Find the interpolation polynomial for the function $y = \sin \pi x$, by choosing the points $0, \frac{1}{6}, \frac{1}{2}$.

(c) If
$$f(-2) = 7$$
, $f(0) = 1$, $f(3) = 7$, find $f(10)$.

(d) Use Simpson's one-third rule to evaluate $\int_{0}^{1} \frac{dx}{(1+x)^2}$ taking six subintervals, correct up to 3 decimal

places.

(e) Use Newton's Backward interpolation formula to find the value of y when x = 7 from the following table :

x	2	4	6	8
у	5	17	39	58

- (f) Using Newton–Raphson method find a positive root of the equation $x^3 2x 5 = 0$, correct up to three significant figures by choosing the initial approximation $x_0 = 2$.
- (g) Find the smallest positive root of the equation $e^x = 4\sin x$, correct to four decimal places by Bisection method.

Please Turn Over

5×4

5

Unit - 3

(8)

(Linear Programming))

4. Answer *any four* questions :

(b) Solve graphically :

- (a) Prove that intersection of two convex sets is also a convex set. Is the result true for union of two convex set? Justify.
 3+2
 - Max. $Z = x_1 + 0.5x_2$ subject to $3x_1 + 2x_2 \le 12$ $5x_1 = 10$ $x_1 + x_2 \ge 8$ $-x_1 + x_2 \ge 4$ $x_1, x_2 \ge 0$
- (c) Prove that the objective function of an LPP assumes its optimal value at an extreme point of the convex set of feasible solutions.
- (d) (2, 1, 3) is a feasible solution of the set of equations :

$$4x_1 + 2x_2 - 3x_3 = 1,$$

$$6x_1 + 4x_2 - 5x_3 = 1$$

Reduce it to a basic feasible solution of the set.

(e) Solve the LPP by the method of Penalty :

Maximize
$$Z = 3x_1 - x_2$$

subject to $2x_1 + x_2 \ge 2$
 $x_1 + 3x_2 \le 3$
 $x_2 \le 4$ and $x_1, x_2 \ge 0.$ 5

(f) Find the optimal solution and the corresponding cost of the transportation problem given by : 4+1

	D_1	D_2	D_3	a_i
O_1	10	9	8	8
02	10	7	10	7
<i>O</i> ₃	11	9	7	9
<i>O</i> ₄	12	14	10	4
b_j	10	10	8	

(g) Find the optimal assignments to find the minimum cost for the assignment problem with the cost matrix :

Ι	Π	III	IV
5	3	1	8
7	9	2	6
6	4	5	7
5	7	7	6
	I 5 7 6 5	<i>I II</i> 5 3 7 9 6 4 5 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Also find the minimum cost.

4 + 1

5

5