2020

MATHEMATICS - GENERAL

Paper : GE/CC-3

Full Marks : 65

Candidates are required to give their answers in their own words as far as practicable.

প্র/ন্তলিशিত সংখ্যগুলি পূণমান নির্দেশক।
১। নিম্নলিখিত প্রশ্নগুলির উত্তর দাও :
(ক) $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$-এর মান रল
(অ) 1
(অ) $\frac{1}{4}$
(ই) π
(ॠ) $\frac{\pi}{4}$
(খ) $h=1$ ধরে $\Delta\left(\frac{1}{x-1}\right)$-এর মান হল
(অ) $\frac{1}{x}$
(অ) $\frac{1}{x-1}$
(弓) $\frac{1}{x}+\frac{1}{x-1}$
(अ) $\frac{1}{x}-\frac{1}{x-1}$ ।
(গ) $\int_{-\pi}^{\pi} \sin ^{7} x d x$-এর মান হল
(অ) π
(অ) 2π
(ই) $\frac{\pi}{2}$
(ঈ) 0 ।
(ঘ) $\int_{-\infty}^{\infty} e^{-x^{2}} d x$-এর মাन হল
(অ) $\sqrt{\pi}$
(आ) $-\sqrt{\pi}$
(ই) $\frac{\pi}{2}$
(ॠ) 0 ।
(ঙ) যদি 0.87654 থেকে 0.87652 বিয়োগ করা হয়, তবে যতগুলি সার্থক অঙ্কের ক্ষতি হবে, তা হল
(অ) 5
(অ) 1
(ই) 4
(ॐ) 0 ।
(চ) $f(x)=0$ সমীকরণটি সমাধান করার ক্ষেত্রে Newton-Raphson পদ্ধতি ব্যর্থ হবে, যখন
(অ) $f^{\prime}(x)=-2$
(आ) $f^{\prime}(x)=0$
(ই) $f^{\prime \prime}(x)=0$
(ঈ) $f^{\prime \prime}(x)=1$ ।
(ছ) কোনো রৈখিক প্রোগ্রামিং সমস্যাতে (LPP) যার চরম বা অবম মান নির্ণয় করা হয়, তা হল
(অ) শর্ত সীমাবদ্ধতা (Constraints)
(আ) বিষয়াত্মক অপেক্ষক
(ই) চলরাশি
(ঈ) এদের কোনোটিই নয়।
(জ) $2 x_{1}-5 x_{2}+x_{3}+2 x_{4}=4,3 x_{1}-10 x_{2}+2 x_{3}+4 x_{4}=14$ সহ্সমীকরণ-এর মৌল চলরাশির সংখ্যা হল
(অ) 1
(आ) 2
(ই) 3
(ॠ) 41
(ঝ) কোনটি উত্তল নয় পরীক্ষা করো :
(অ) $X=\left\{(x, y) \mid x^{2}+y^{2} \geq 1\right.$ এবং $\left.x^{2}+y^{2} \leq 2\right\}$
(आ) $X=\left\{(x, y) \mid 4 x^{2}+9 y^{2} \leq 36\right\}$
(ই) $X=\left\{(x, y) \mid y^{2} \geq 4 x\right\}$
(ॐ) $X=\{(x, y) \mid x \geq 2, y \leq 3, x, y \geq 0\}$ ।
(@) $S=\left\{(x, y) \mid x^{2}+y^{2} \leq 25\right\}$ সেট্টির প্রান্তবিন্দুগুলি হল
(অ) বৃত্তটির ভিতরের বিন্দু
(আ) বৃত্তটির ওপরের বিন্দু
(ই) বৃত্তটির বাইরের বিন্দু
(ঈ) বৃত্তটির ব্যাসের ওপরের বিন্দু।

ইউনিট - ১

(সমাকলন বিদ্যা)

২। যে-কোনো তিনটি প্রশ্নের উত্তর দাও :
(ক) দেখাও যে $\int_{0}^{\pi / 2} \log \sin x d x=\frac{\pi}{2} \log \left(\frac{1}{2}\right)$ ।
(খ) यদি $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$ হয়, তবে দেখাও যে $I_{n+1}-I_{n-1}=\frac{1}{n}$ ।
এই সম্পর্কটি ব্যবহার করে মান নির্ণয় করো: $\int_{0}^{\pi / 4} \tan ^{8} x d x$
৩+२
(গ) মান নির্ণয় করো : $\lim _{n \rightarrow \infty}\left\{\left(1+\frac{1^{2}}{n^{2}}\right)\left(1+\frac{2^{2}}{n^{2}}\right) \ldots\left(1+\frac{n^{2}}{n^{2}}\right)\right\}^{\frac{1}{n}}$
(ঘ) Beta-অপেক্ষক-এর সংজ্ঞা প্রয়োগ করে প্রমাণ করো যো $\int_{0}^{\pi / 2} \cos ^{4} x d x=\frac{3 \pi}{16}$ ।
(ঙ) মান निর্ণয় করো : $\int_{0}^{1} \frac{d x}{\left(1-x^{6}\right)^{1 / 6}}$ ।

ইউনিট - २

(সাংখ্যিক পদ্ধতি))

৩। যে-কোনো চারটি প্রক্নের উত্তর দাও :
(ক) $h=1$ ধরে দেখাও যে $\left(\frac{\Delta^{2}}{E}\right) x^{3}=6 x$ ।
(খ) $0, \frac{1}{6}, \frac{1}{2}$ বিন্দুগুলির সাহায্যে $y=\sin \pi x$ অপেক্ষকের জন্য অন্তঃমান-বহুপদী রাশিমালাটি নির্ণয় করো।
(গ) $f(-2)=7, f(0)=1, f(3)=7$ रুলে $f(10)$-এর মান কত ?
(ঘ) Simpson-এর এক-তৃতীয়াংশ নিয়মে ছয়টি উপঅন্তরাল নিয়ে তিন দশমিক স্থান পর্যন্ত আসন্নমানে সমাকলন করো:

$$
\int_{0}^{1} \frac{d x}{(1+x)^{2}}
$$

(ঙ) নিউটনের পম্চাদসারি অন্তঃমান নির্ণয়ের সূত্রের সাহায্যে নিম্নলিখিত সারণি থেকে y-এর মান নির্ণয় করো, যখন $x=7$ ঃ

x	2	4	6	8
y	5	17	39	58

(চ) Newton-Raphson পদ্ধতি ব্যবহার করে এবং $x_{0}=2$ ধরে সমীকরণ $x^{3}-2 x-5=0$-এর তিন সার্থক অঙ্ক পর্যন্ত একটি ধনাত্মক বীজ নির্ণয় করো।
(ছ) সমদ্বিখণ্ডন (Bisection) পদ্ধতি ব্যবহার করে $e^{x}=4 \sin x$ সমীকরণের ক্ষুদ্রতম ধনাত্মক বীজ (চার দশমিক স্থান পর্যন্ত) নিণয় করো।

ইউনিট - ৩

(রৈখিক প্রো্রেমিং)

8। যে-কোনো চারটি প্রশ্নের উত্তর দাও :
(ক) প্রমাণ করো দুটি উত্তল সেটের প্রতিচ্ছেছপ (intersection) একটি উত্তল সেট। এই সিদ্ধান্ত (result) কি দুটি উত্তল সেটের সংযোগের ক্ষেত্রেও সত্যি ? যুক্তি দাও।
(খ) লেখচিত্রের সাহায্যে সমাধান করো ঃ

$$
\begin{array}{cl}
\text { চরম } & Z=x_{1}+0.5 x_{2} \\
\text { যেখানে } & 3 x_{1}+2 x_{2} \leq 12 \\
& 5 x_{1} \quad=10 \\
& x_{1}+x_{2} \geq 8 \\
& -x_{1}+x_{2} \geq 4 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

(গ) প্রমাণ করো যে একটি রৈখিক প্রোগ্রামিং সমস্যাতে বিযয়াতক অপেক্ষকটি চরম মান গ্রহণ করে ওই সমীকরণ সমূহের কার্যকর সমাধান দ্বারা গঠিত উত্তল সেটের প্রান্তিক বিন্দু।
(ঘ) $(2,1,3)$ হল निম্নলিখিত সমীকরণ সমূহের একটি কার্যকর সমাধান :

$$
\begin{aligned}
& 4 x_{1}+2 x_{2}-3 x_{3}=1 \\
& 6 x_{1}+4 x_{2}-5 x_{3}=1
\end{aligned}
$$

ওই কার্যকর সমাধানকে মৌল কার্যকর সমাধানে রূপান্তরিত করো।
(ঙ) নিম্নলিখিত রৈখিক প্রোগ্রামিং সমস্যাটি Penalty পদ্ধতির সাহায্যে সমাধান করো ঃ

$$
\begin{aligned}
\text { চরম } & Z=3 x_{1}-x_{2} \\
\text { যেখানে } & 2 x_{1}+x_{2} \geq 2 \\
& x_{1}+3 x_{2} \leq 3 \\
& x_{2} \leq 4 \text { এবং } x_{1}, x_{2} \geq 0
\end{aligned}
$$

(চ) নিম্নলিখিত পরিবহন সমস্যাটির চরম সমাধান এবং সংশ্লিষ্ট পরিবহন খরচ নির্ণয় করো :

	D_{1}			D_{2}
D_{3}	a_{i}			
O_{1}	10	9	8	8
O_{2}	10	7	10	7
O_{3}	7			
O_{3}	11	9	7	9
O_{4}	12	14	10	4
b_{j}	10	10	8	

(ছ) নিম্নলিখিত আরোপ সমস্যাটির অনুকূল নিয়োগ (optimal assignment) নির্ণয় করো এবং সর্বনিম্ন খরচ নির্ণয় করো ঃ

	I		$I I$	
$I I I$	$I V$			
A	5	3	1	8
B	7	9	2	6
C	6	4	5	7
D	5	7	7	6

[English Version]

The figures in the margin indicate full marks.

1. Answer all the questions:
(a) Value of $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$ is
(i) 1
(ii) $\frac{1}{4}$
(iii) π
(iv) $\frac{\pi}{4}$.
(b) Value of $\Delta\left(\frac{1}{x-1}\right)$ taking $h=1$ is
(i) $\frac{1}{x}$
(ii) $\frac{1}{x-1}$
(iii) $\frac{1}{x}+\frac{1}{x-1}$
(iv) $\frac{1}{x}-\frac{1}{x-1}$.
(c) The value of $\int_{-\pi}^{\pi} \sin ^{7} x d x$ is
(i) π
(ii) 2π
(iii) $\frac{\pi}{2}$
(iv) 0 .
(d) The value of $\int_{-\infty}^{\infty} e^{-x^{2}} d x$ is
(i) $\sqrt{\pi}$
(ii) $-\sqrt{\pi}$
(iii) $\frac{\pi}{2}$
(iv) 0 .
(e) If 0.87652 is subtracted from 0.87654 , then the loss of significant figure is
(i) 5
(ii) 1
(iii) 4
(iv) 0 .
(f) Newton-Raphson method fails for solving $f(x)=0$ when
(i) $f^{\prime}(x)=-2$
(ii) $f^{\prime}(x)=0$
(iii) $f^{\prime \prime}(x)=0$
(iv) $f^{\prime \prime}(x)=1$.
(g) In an LPP, we have to optimize the
(i) constraints
(ii) objective function
(iii) variables
(iv) none of these.
(h) Number of basic variables of the system of equations
$2 x_{1}-5 x_{2}+x_{3}+2 x_{4}=4,3 x_{1}-10 x_{2}+2 x_{3}+4 x_{4}=14$ is
(i) 1
(ii) 2
(iii) 3
(iv) 4 .
(i) Examine which is not convex :
(i) $X=\left\{(x, y) \mid x^{2}+y^{2} \geq 1\right.$ and $\left.x^{2}+y^{2} \leq 2\right\}$
(ii) $X=\left\{(x, y) \mid 4 x^{2}+9 y^{2} \leq 36\right\}$
(iii) $X=\left\{(x, y) \mid y^{2} \geq 4 x\right\}$
(iv) $X=\{(x, y) \mid x \geq 2, y \leq 3, x, y \geq 0\}$.
(j) The extreme points of the set $S=\left\{(x, y) \mid x^{2}+y^{2} \leq 25\right\}$ are the points:
(i) inside the circle
(ii) on the circle
(iii) outside the circle
(iv) on the diameter.

Unit - 1

(Integral Calculus)

2. Answer any three questions:
(a) Show that $\int_{0}^{\pi / 2} \log \sin x d x=\frac{\pi}{2} \log \left(\frac{1}{2}\right)$.
(b) If $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$, show that $I_{n+1}-I_{n-1}=\frac{1}{n}$.

Using this relation find the value of $\int_{0}^{\pi / 4} \tan ^{8} x d x$.
(c) Find the value: $\lim _{n \rightarrow \infty}\left\{\left(1+\frac{1^{2}}{n^{2}}\right)\left(1+\frac{2^{2}}{n^{2}}\right) \ldots\left(1+\frac{n^{2}}{n^{2}}\right)\right\}^{\frac{1}{n}}$
(d) Using the definition of Beta function, prove that $\int_{0}^{\pi / 2} \cos ^{4} x d x=\frac{3 \pi}{16}$.
(e) Find the value : $\int_{0}^{1} \frac{d x}{\left(1-x^{6}\right)^{1 / 6}}$.

Unit - 2

(Numerical Methods)

3. Answer any four questions:
(a) Show that $\left(\frac{\Delta^{2}}{E}\right) x^{3}=6 x$, taking $h=1$.
(b) Find the interpolation polynomial for the function $y=\sin \pi x$, by choosing the points $0, \frac{1}{6}, \frac{1}{2}$.
(c) If $f(-2)=7, f(0)=1, f(3)=7$, find $f(10)$.
(d) Use Simpson's one-third rule to evaluate $\int_{0}^{1} \frac{d x}{(1+x)^{2}}$ taking six subintervals, correct up to 3 decimal places.
(e) Use Newton's Backward interpolation formula to find the value of y when $x=7$ from the following table :

x	2	4	6	8
y	5	17	39	58

(f) Using Newton-Raphson method find a positive root of the equation $x^{3}-2 x-5=0$, correct up to three significant figures by choosing the initial approximation $x_{0}=2$.
(g) Find the smallest positive root of the equation $e^{x}=4 \sin x$, correct to four decimal places by Bisection method.

Unit - 3

(Linear Programming))

4. Answer any four questions :
(a) Prove that intersection of two convex sets is also a convex set. Is the result true for union of two convex set? Justify.
(b) Solve graphically:

$$
\begin{array}{lr}
\text { Max. } & Z=x_{1}+0.5 x_{2} \\
\text { subject to } & 3 x_{1}+2 x_{2} \leq 12 \\
5 x_{1} & =10 \\
x_{1}+x_{2} & \geq 8 \\
-x_{1}+x_{2} & \geq 4 \\
x_{1}, x_{2} & \geq 0
\end{array}
$$

(c) Prove that the objective function of an LPP assumes its optimal value at an extreme point of the convex set of feasible solutions.
(d) $(2,1,3)$ is a feasible solution of the set of equations :

$$
\begin{aligned}
& 4 x_{1}+2 x_{2}-3 x_{3}=1, \\
& 6 x_{1}+4 x_{2}-5 x_{3}=1
\end{aligned}
$$

Reduce it to a basic feasible solution of the set.
(e) Solve the LPP by the method of Penalty:

$$
\begin{array}{ll}
\text { Maximize } & Z=3 x_{1}-x_{2} \\
\text { subject to } & 2 x_{1}+x_{2} \geq 2 \\
& x_{1}+3 x_{2} \leq 3 \\
& x_{2} \leq 4 \quad \text { and } x_{1}, x_{2} \geq 0 . \tag{5}
\end{array}
$$

(f) Find the optimal solution and the corresponding cost of the transportation problem given by: $4+1$

	D_{1}			D_{2}
D_{3}	a_{i}			
O_{1}	10	9	8	8
O_{2}	10	7	10	7
O_{3}	11	9	7	9
O_{4}	11	9	7	
O_{4}	12	14	10	4
b_{j}	10	10	8	

(g) Find the optimal assignments to find the minimum cost for the assignment problem with the cost matrix :

	$\begin{array}{lllll}\text { I } & \text { II } & \text { III } & \text { IV }\end{array}$			
A	5	3	1	8
B	7	9	2	6
C	6	4	5	7
D	5	7	7	6

Also find the minimum cost.

