City College

Internal Examination-2020
 Physics (Hons) (1+1+1)

Part-I: Paper I

Time: $\mathbf{2}$ hours $\mathbf{3 0}$ minutes
Full Marks: 50

Answer any ten questions. Each question carries 5 marks.
$10 \times 5=50$

1. (a) If \vec{A} is a constant vector, find $\operatorname{grad}(\vec{A} \cdot \vec{r})$.
(b) Deduce $\vec{\nabla} \times(\varphi \vec{A})=(\vec{\nabla} \varphi) \times \vec{A}+\varphi(\vec{\nabla} \times \vec{A})$. $2+3$
2. Given the vector $\vec{A}=\left(x^{2}-y\right) \hat{\imath}+2 x \hat{\jmath}+2 \hat{k}$. Evaluate $\oint \vec{A}$. $d \vec{r}$ around the boundary of a $\operatorname{circle} x^{2}+y^{2}=1$.
3. Find the eigenvalues and the normalized eigenvector of the matrix $\mathrm{M}=\left(\begin{array}{lr}2 & 2 \\ 2 & -1\end{array}\right)$.
4. Consider the matrices $\sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{2}=\left(\begin{array}{rr}0 & -i \\ i & 0\end{array}\right), \sigma_{3}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$. Which of these is/are Hermitian? Which is/are unitary?
5. (a) Check whether the series $\sin x$ converges for all x.
(b) Expand $\cos x$ about $x=\frac{3 \pi}{2}$.
6. (a) State the order and degree of the following differential equation: $\frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{2}+x y=0$
(b) Consider the differential quantity $\left(x^{2}-y\right) d x+x d y$. Is it an exact differential? $2+3$
7. (a) Consider the function $f(x)=\sin x$ for $0<x<\pi$,

$$
=-\sin x \text { for }-\pi<x<0
$$

$f(x+2 \pi)=f(x)$. Find the Fourier series expansion of $\mathrm{f}(\mathrm{x})$.
8. A mass of 1 kg is acted on by a restoring force with force constant $4 \mathrm{~N} / \mathrm{m}$ and a resisting force with damping co-efficient $2 \mathrm{~N}-\mathrm{s} / \mathrm{m}$. Write down the equation of motion in 1-D. Find: (i) whether the motion is periodic or oscillatory (ii) the value of resisting force which will make the motion critically damped.
9. Define phase velocity and group velocity. Obtain the relation between group velocity and phase velocity.
10. (a) The band gap of a specimen of GaAs is 1.95 eV . Determine the wavelength of electromagnetic wave radiated upon recombination of holes and electrons.
(b) Why we cannot measure the barrier potential existing across a p-n junction by connecting a voltmeter across the junction?
(c) State Thevnin's theorem.
$2+2+1$
11. (a) Draw a sketch of the drain characteristics of a MOSFET and identify different regions.
(b) Why FET's can be used at higher frequencies than BJT's?
12. (a) Draw the circuit diagram of XNOR gate using basic gates and write down its truth table.
(b) Verify the Boolean identity: $A+B+A \bar{B} C+B C=A+B$.

