CITY COLLEGE

Internal Assessment 2021
 Physics (Hons.) CBCS Semester 4
 Paper: CC10
 Time: 1 Hour; Full Marks: 20

Answer any ten questions from the following:
$10 \times 2=20$

1. Write the boundary conditions required to solve 1-D finite square well potential problem.
2. Show that the energy level of a hydrogen atom for a given ' n ' is n^{2} fold degenerate, where n is the principal quantum number.
3. The radial wave function for $1-\mathrm{s}$ state of a hydrogen atom is given by $C e^{\frac{-r}{a_{0}}}$, where C and a_{0} are constants. Find average value of $\frac{1}{r}$.
4. For a wave function $C e^{\frac{-r}{a_{0}}}$, where C and r_{0} are constants, show that the probability density is maximum at $r=a_{0}$.
5. A positron and an electron from a short-lived atom called positronium before the two annihilates to form γ rays. Calculate in eV , the ground state energy of positronium.
6. Let Ψ_{0} and Ψ_{2} denote, respectively, the ground state and second excited state energy eigenfunctions of a particle moving in a 1-D harmonic oscillator potential with frequency ω. At $\mathrm{t}=0$ the particle has the wave function $\Psi(x)=\frac{1}{\sqrt{3}} \Psi_{0}(x)+\frac{2}{\sqrt{3}} \Psi_{2}(x)$. Determine the expectation value of energy as a function of time.
7. Show that the classical probability of finding L.H.O. in dx at x is given by $P(x) d x=$ $\frac{d x}{\pi \sqrt{a^{2}-x^{2}}}$, where a is the amplitude of oscillation.
8. What do you mean by a wave packet?
9. What are Normal and Anomalous Zeeman effects?
10. Show that the raising and lowering operators J_{+}and J_{-}are Hermitian conjugates.
11. Prove that spin matrices S_{x} and S_{y} have $\pm(h / 4 \pi)$ eigenvalues.
12. What is the difference between LS coupling and JJ coupling?
13. Is it possible for a Lande-g-factor to have a value smaller than 1 ?
14. Discuss similarities and differences between a matter wave and an electromagnetic wave.
15. Exactly why do we conclude that the spin quantum numbers are half-integral?

Answer scripts must be emailed to sem4hcityphysics@gmail.com within 15 minutes of the end of the examination.

