City College

Internal Assessment 2021
Physics (Hons.) CBCS Semester 4
Paper: CC-8: Mathematical Physics III
Time: 1 Hour; Full Marks: 20
Answer any 10 questions. Each question carries 2 marks.

1. Find the singularities of the function $f(z)=\frac{1}{1-z}-\frac{1}{1+z}$.
2. For $f(z)=u+i v$, given that $u=x^{2}-y^{2}$, determine $f(z)$ up to an additive constant using Cauchy-Riemann conditions.
3. Find the residue of $f(z)=\frac{\tan z}{z^{2}}$ at $z=0$.
4. Show that if $f(z)$ is an analytic function, then $\frac{d f}{d z^{*}}=0$.
5. Does the density of an object change as its speed increases? If yes, by what factor?
6. Consider the line element

$$
d s^{2}=-\left(1-\frac{r_{s}}{r}\right) c^{2} d t^{2}+\left(1-\frac{r_{s}}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) .
$$

Write down all the non-vanishing elements of the metric $g_{\mu \nu}$.
7. What do you mean by space-like and time-like vectors?
8. In an observer's rest frame, a particle is moving towards the observer with an energy E and momentum P. If c denotes the velocity of light in vacuum, what is the energy of the particle in another frame moving in the same direction as the particle with a constant velocity v ?
9. Consider a Lorentz transformation in a 2-dimensional space-time given by

$$
\begin{aligned}
c t^{\prime} & =\gamma(c t-\beta x) \\
x^{\prime} & =\gamma(-\beta c t+x),
\end{aligned}
$$

where $\gamma=\left(1-\beta^{2}\right)^{-\frac{1}{2}}$ and $\beta=\frac{v}{c}$. Write down the matrix $\Lambda(\beta)$ of the above transformation and check if $\Lambda(\beta)$ is orthogonal.
10. Show that 4 -velocity and 4 -acceleration are orthogonal to each other: $u^{\mu} a_{\mu}=0$.
11. The Lagrangian of a particle of mass m and charge q in an electromagnetic field is given by

$$
L=\frac{1}{2} m v^{2}-q(\Phi-\vec{v} \cdot \vec{A}),
$$

where Φ and \vec{A} are the scalar and vector potentials respectively. Now consider the transformations:

$$
\Phi \rightarrow \Phi-\frac{d \chi}{d t}, \quad \vec{A} \rightarrow \vec{A}+\vec{\nabla} \chi
$$

Does the Lagrangian remain unchanged under this transformation? Does the equation of motion remain unchanged? Explain your answer.
12. Show that the Lagrangian $L=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} k x^{2}-k x \dot{x} t$ represents a free particle.
13. A particle moves in a potential $V=x^{2}+\frac{1}{2} y^{2}+z^{2}$. Which component(s) of the angular momentum is/are conserved?
14. Consider two non-interacting systems A and B with Lagrangians L_{A} and L_{B}. Now consider the composite system $A \cup B$ with Lagrangian $L_{A \cup B}$. Is $L_{A \cup B}=L_{A} L_{B}$ a valid Lagrangian of the system? Justify your answer.
15. A system is described by the Lagrangian $L=\lambda \dot{q}_{1} \dot{q}_{2}$. If p_{1} and p_{2} be the momenta canonical to q_{1} and q_{2} respectively, find the Hamiltonian of the particle.

Answer scripts must be emailed to sem4hcityphysics@gmail.com within 15 minutes of the end of the examination.

