City College

Internal Examination 2021 Physics (Hons.) CBCS Semester 4

Paper: PHSA CC9
Topic: Analog Electronics

Full Marks: 20; Time: 1 Hour

Answer any ten questions from the following:

 $[2 \times 10 = 20]$

- 1. What is thermal runaway?
- 2. What is Q point and Load line?
- 3. Derive the relationship between α and β .
- 4. What do you mean by 'virtual ground' of an OP AMP?
- 5. What is Barkhausen criterion? What are the primary requirements to obtain steady oscillation at a fixed frequency?
- 6. An amplifier with mid gain |A| = 400 has negative feedback $|\beta| = 0.02$. If the upper cut off frequency without feedback was at 50kHz, then calculate its value with feedback.
- 7. An RC network produces a phase-shift of 30°. How many such RC networks should be cascaded together and connected to a Common Emitter amplifier so that the final circuit behaves as an oscillator?
- 8. A diode D as shown in the circuit has an t v relation that can be approximated by

$$i_D = \begin{cases} v_D^2 + 2v_D & for \ v_D \ge 0 \\ 0 & for \ v_D \le 0 \end{cases}$$

Calculate v_D in the circuit.

9. In the circuit, D_1 and D_2 are two silicon diodes with the same characteristics. If the forward voltage drop of a silicon diode is 0.7 V then the value of the current $I_1 + I_{D_1}$ is

- 10. If the transistors in Figures (a) and (b) have current gain (β_{dc}) of 100 and 10 respectively, then they operate in the
 - (a) active region and saturation region respectively
 - (b) saturation region and active region respectively
 - (c) saturation region in both cases
 - (d) active region in both cases

11. For the transistor shown in the figure, assume $V_{BE} = 0.7V$ and $\beta_{dc} = 100$. Calculate the output voltage (V_{out}) if $V_{in} = 5V$.

12. For the following circuit, what is the magnitude of V_{out} if

13. Calculate the output voltage for the OP-AMP circuit shown in the figure.

14. If the parameters y and x are related by $y = \log x$, then the circuit that can be used to produce an output voltage V_0 varying linearly with x is

15. The transistor in the given circuit has $h_{fe}=35\,\Omega$ and $h_{ie}=1000\Omega$. If the load resistance $R_L=1000\Omega$, calculate the voltage and current gain.

Answer scripts must be emailed to sem4hcityphysics@gmail.com within 15 minutes of the end of the examination