Application of Schrodinger Equation to One Dimensional System

- We need to solve Schrodinger Equation for some simple one dimensional systems to obtain the energy eigenvalues, eigenfunctions and their physical significance.
- The potential energy function $\mathrm{V}(\mathrm{x})$ will be different for different systems.
- Different systems will have different boundary conditions.
- The boundary conditions are imposed on the wavefunction.
- These are the predefined values of the wave function at the boundary of the system under consideration.

1. Particle in an infinitely rigid box

Suppose a particle is moving inside an infinitely rigid box of length \boldsymbol{a} in one dimension like the following figure.

The potential is infinite everywhere except for $0 \leq x \leq a$ where it is zero. So,
$\mathrm{V}(\mathrm{x})=0$ for $0 \leq \mathrm{x} \leq \mathrm{a}$
$=\infty$ elsewhere.
As the particle is confined within the $0 \leq x \leq a$, we need to solve Schrodinger equation in the region $0 \leq \mathrm{x} \leq \mathrm{a}$. The solution is zero outside the region. Time independent Schrodinger equation reads

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=(E-V) \psi
$$

Putting V=0

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi \\
\frac{d^{2} \psi}{d x^{2}}=-\frac{2 m E}{\hbar^{2}} \psi \\
\text { or, } \frac{\boldsymbol{d}^{2} \boldsymbol{\psi}}{\boldsymbol{d} \boldsymbol{x}^{2}}=-\boldsymbol{k}^{2} \boldsymbol{\psi} \quad----(1) \text { where } k^{2}=\frac{2 m E}{\hbar^{2}}
\end{gathered}
$$

The general of the second order differential equation (1) is

$$
\psi=A \sin k x+B \cos k x------(2)
$$

The constants A and b can be determined using proper boundary conditions. Note that the value of the wave function must be zero at the endpoints of the box. So
i) $\quad \psi=0$ at $x=0$
ii) $\quad \psi=0$ at $\mathrm{x}=\mathrm{a}$.

Putting the boundary condition (i) in equation (2), we get $\mathrm{B}=0$. Then equation (ii) reduces to

$$
\psi=A \sin k x----(3)
$$

Putting the boundary condition (ii) in equation (3), we get $A \sin k a=0$. The constant A cannot be zero as it would make the wave function zero everywhere. So

$$
\sin k a=0, \quad \text { or }, \quad k a=n \pi \quad \text { where } n=1,2,3, \ldots
$$

The value $\mathrm{n}=0$ is left out as it leads to $\psi=0$. Thus $k=\frac{n \pi}{a}$.

$$
\begin{gathered}
\therefore \frac{2 m E}{\hbar^{2}}=\frac{n^{2} \pi^{2}}{a^{2}} \\
\boldsymbol{E}_{\boldsymbol{n}}=\frac{\boldsymbol{n}^{2} \boldsymbol{\pi}^{2} \hbar^{2}}{\mathbf{2 m} \boldsymbol{a}^{2}}, \quad n=1,2,3
\end{gathered}
$$

These are the energy eigenvalues for different energy levels denoted by the value of n. Now the wave function becomes

$$
\psi(x)=A \sin \frac{n \pi x}{a}
$$

The normalization condition requires

$$
\begin{gathered}
\int_{0}^{a} \psi^{2}(x) d x=1 \\
\left|A^{2}\right| \int_{0}^{a} \sin ^{2} \frac{n \pi x}{a} d x=1 \\
\left|A^{2}\right| \frac{a}{2}=1 \\
A=\sqrt{\frac{2}{a}}
\end{gathered}
$$

Thus the stationary state wave functions for the particle in an infinitely rigid box is given by

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \quad n=1,2,3, \ldots
$$

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)
$$

Energy Solutions

$$
E_{n}=\frac{\hbar^{2} k^{2}}{2 m}=n^{2}\left(\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}\right)
$$

2. One Dimensional Step Potential

Consider a particle of mass m and energy E moving along X axis acted upon by a constant potential V_{0} at all points $\mathrm{x}>0$. The potential is zero for all $\mathrm{x}<0$. A step potential of this type is given by

$$
\begin{aligned}
\mathrm{V}(\mathrm{x}) & =\mathrm{V}_{0}, \mathrm{x}>0 \\
& =0, \quad \mathrm{x}<0
\end{aligned}
$$

Two cases may arise: (1) $\mathrm{E}>\mathrm{V}_{0}$ (Classically no reflection is possible towards region I) and (2) $\mathrm{E}<\mathrm{V}_{0}$ (Classically no transmission is possible in region II)

Case 1. $\mathrm{E}>\mathrm{V}_{\mathbf{0}}$

First Part: General solution of Schrodinger Equation

For region I, $(x<0)$ where $V(x)=0$, the time independent Schrodinger equation is

$$
\frac{d^{2} \psi_{1}}{d x^{2}}+\frac{2 m E}{\hbar^{2}} \psi_{1}=0, \text { or }, \frac{d^{2} \psi_{1}}{d x^{2}}+\alpha^{2} \psi_{1}=0-(1)
$$

$\alpha^{2}=\frac{2 m E}{\hbar^{2}}$ (a real quantity) and ψ_{1} is the wave function in region I.

The general solution to equation (1) is

$$
\psi_{1}(x)=A e^{i \alpha x}+B e^{-i \alpha x}-(2)
$$

The term $A e^{i \alpha x}$ represents the incident particles and $B e^{-i \alpha x}$ represents the reflected particles.

For region II, $(x>0)$ where $V(x)=V_{0}$, the time independent Schrodinger equation is

$$
\frac{d^{2} \psi_{2}}{d x^{2}}+\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}} \psi_{2}=0, \text { or }, \frac{d^{2} \psi_{2}}{d x^{2}}+\beta^{2} \psi_{2}=0-(3)
$$

$\beta^{2}=\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}$ (a real quantity) and ψ_{2} is the wave function in region II.
The general solution to equation (3) is

$$
\psi_{2}(x)=C e^{i \beta x}-(4)
$$

Since in region II, the wave propagates to right only, there is no question of reflecting back and thus $e^{-i \alpha x}$ term is absent.

Second Part: Applying Boundary Conditions

The three co-efficients A, B, C can be obtained by applying boundary conditions at $x=0$. The boundary conditions are-
i) Wave function ψ is continuous at $\mathrm{x}=0$

$$
\left(\psi_{1}\right)_{x=0}=\left(\psi_{2}\right)_{x=0}
$$

ii) $\quad \frac{d \psi}{d x}$ is continuous at $\mathrm{x}=0$.

$$
\left(\frac{d \psi_{1}}{d x}\right)_{x=0}=\left(\frac{d \psi_{2}}{d x}\right)_{x=0}
$$

Applying the boundary condition (i) at $x=0$ in equations (2) and (4) we get

$$
\begin{equation*}
A+B=C . \tag{5}
\end{equation*}
$$

Applying the boundary condition (ii) at $x=0$ in equations (2) and (4) we get

$$
\begin{equation*}
A-B=\frac{\beta}{\alpha} C . . \tag{6}
\end{equation*}
$$

Solution:

Solving 5 and 6 we get,

$$
\begin{align*}
& A=\frac{C}{2}\left(1+\frac{\beta}{\alpha}\right) \ldots \tag{7}\\
& B=\frac{C}{2}\left(1-\frac{\beta}{\alpha}\right) \ldots \tag{8}
\end{align*}
$$

Hence we have

$$
\begin{align*}
& \frac{B}{A}=\frac{\alpha-\beta}{\alpha+\beta} \ldots . \tag{9}\\
& \frac{C}{A}=\frac{2 \alpha}{\alpha+\beta} \ldots \ldots \tag{10}
\end{align*}
$$

Remember: A represents incident particles, B represents reflected particles, C represents transmitted particles.

According to equation $10, \mathrm{C}>\mathrm{A}$ as $\alpha>\beta$. So the amplitude of the transmitted wave is greater than the amplitude of incident wave. Nature of the wave function is shown in the following figure.

Transmission co-efficient is defined as

$$
\begin{aligned}
& T=\frac{\text { Probability current density for transmitted wave }}{\text { Probability current density for incident wave }} \\
&=\frac{S_{t}}{S_{i}} \\
&=\frac{\frac{\hbar \beta}{m}|C|^{2}}{\frac{\hbar \alpha}{m}|A|^{2}} \\
&=\frac{\beta}{\alpha} \frac{|C|^{2}}{|A|^{2}} \\
&= \frac{\beta}{\alpha}\left(\frac{2 \alpha}{\alpha+\beta}\right)^{2} \\
&= \frac{4 \alpha \beta}{(\alpha+\beta)^{2}}
\end{aligned}
$$

Reflection co-efficient is defined as

$$
\begin{gathered}
R=\frac{\text { Probability current density for reflected wave }}{\text { Probability current density for incident wave }} \\
=\frac{S_{r}}{S_{i}} \\
=\frac{\frac{\hbar \alpha}{m}|B|^{2}}{\frac{\hbar \alpha}{m}|A|^{2}} \\
=\left(\frac{\alpha-\beta}{\alpha+\beta}\right)^{2} \\
\text { Thus, } R+T=1
\end{gathered}
$$

This also shows there is a non-zero, finite probability of reflection at the step.

2. One Dimensional Step Potential (Continued)

Case 2. $\mathrm{E}<\mathrm{V}_{0}$

First Part: General solution of Schrodinger Equation
For region I, $(x<0)$ where $V(x)=0$, the time independent Schrodinger equation is

$$
\frac{d^{2} \psi_{1}}{d x^{2}}+\frac{2 m E}{\hbar^{2}} \psi_{1}=0, \text { or, } \frac{d^{2} \psi_{1}}{d x^{2}}+\alpha^{2} \psi_{1}=0-(1)
$$

$\alpha^{2}=\frac{2 m E}{\hbar^{2}}$ (a real quantity) and ψ_{1} is the wave function in region I.
The general solution to equation (1) is

$$
\psi_{1}(x)=A e^{i \alpha x}+B e^{-i \alpha x}-(2)
$$

The term $A e^{i \alpha x}$ represents the incident particles and $B e^{-i \alpha x}$ represents the reflected particles.
For region II, $(x>0)$ where $V(x)=V_{0}$, the time independent Schrodinger equation is

$$
\frac{d^{2} \psi_{2}}{d x^{2}}+\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}} \psi_{2}=0, \text { or }, \frac{d^{2} \psi_{2}}{d x^{2}}-\beta^{2} \psi_{2}=0-(3)
$$

$\beta^{2}=\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}$ and ψ_{2} is the wave function in region II. Notice the change in β to keep it positive
The general solution to equation (3) is

$$
\psi_{2}(x)=C e^{-\beta x}-(4)
$$

In region II, $C e^{-\beta x}$ is an exponentially decreasing function, which penetrates the potential barrier for some finite distance in positive X direction. $D e^{\beta x}$ term is an exponentially increasing wave function. But according to physical interpretation of wave function, a wave function must remain finite when $x \rightarrow \infty$. So d must be zero, hence this term is omitted.

Second Part: Applying Boundary Conditions

The three co-efficients A, B, C can be obtained by applying boundary conditions at $x=0$. The boundary conditions are-
i) Wave function ψ is continuous at $\mathrm{x}=0$

$$
\left(\psi_{1}\right)_{x=0}=\left(\psi_{2}\right)_{x=0}
$$

ii) $\quad \frac{d \psi}{d x}$ is continuous at $\mathrm{x}=0$.

$$
\left(\frac{d \psi_{1}}{d x}\right)_{x=0}=\left(\frac{d \psi_{2}}{d x}\right)_{x=0}
$$

Applying the boundary condition (i) at $x=0$ in equations (2) and (4) we get

$$
A+B=C \ldots(5)
$$

Applying the boundary condition (ii) at $x=0$ in equations (2) and (4) we get

$$
A-B=\frac{i \beta}{\alpha} C \ldots \text { (6) }
$$

Solution:

Solving 5 and 6 we get,

$$
\begin{align*}
& A=\frac{C}{2}\left(1+\frac{i \beta}{\alpha}\right) \ldots \tag{7}\\
& B=\frac{C}{2}\left(1-\frac{i \beta}{\alpha}\right) \ldots \tag{8}
\end{align*}
$$

Hence we have

$$
\begin{align*}
& \frac{B}{A}=\frac{\alpha-i \beta}{\alpha+i \beta} \ldots . \tag{9}\\
& \frac{C}{A}=\frac{2 \alpha}{\alpha+i \beta} \ldots \tag{10}
\end{align*}
$$

Reflection Co-efficient

$$
R=\frac{|B|^{2}}{|A|^{2}}
$$

$$
=\frac{|\alpha-i \beta|^{2}}{|\alpha+i \beta|^{2}}=1
$$

Since $T+R=1, T=0$. The conclusions from the result are-
i) There is a finite probability of finding the particle in region II represented by the factor $e^{-\beta x}$ in equation (4).
ii) There is no absorption in region II, 100% reflection at the boundary. The wave penetrating a small distance into region II is continuously reflected till all the incident energy is reflected back to region 1 .
iii) According to classical mechanics a particle of energy $\mathrm{E}<\mathrm{V}_{0}$ can never penetrate into region II. But in quantum mechanics, there is a finite probability of finding the particle at region II within a short distance.

