Optimal Provision of Public goods : We are aware of what Public goods are. We directly proceed to the solution. The technique is simply to hold U_{2} at a constant level, $\overline{U 2}$, and then maximise U_{1} subject to the PPF constraint, denoted by $\left[F\left(Q_{0}, Q_{1}\right)\right]=0$. The problem can be stated as follows:
Maximise $U_{1}\left(Q_{0}, Q^{1}{ }_{1}\right)$ subject to a constant $\overline{U 2}=U_{2}\left(Q_{0}, Q^{2}{ }_{1}\right)$ and a PPF, $F\left(Q_{0}, Q_{1}\right)=0$, where Q_{0} denotes quantity of the public good and Q_{1} denotes quantity of the private good.
The same amount of the public good Q_{0} is consumed by both consumer 1 and 2, i.e., $Q_{0}=Q^{1} 0=Q^{2} 0$ But, $Q_{1}=Q^{1}{ }_{1}+Q^{2}{ }_{1}$ for the private good. So we form the Lagrangian as follows:
$\Psi=U_{1}\left(Q_{0}, Q^{1}{ }_{1}\right)+\mu\left(\overline{U 2}-U_{2}\left(Q_{0}, Q^{2}{ }_{1}\right)\right)+\xi\left[F\left(Q_{0}, Q_{1}\right)\right]$

The first order conditions are :
$\left(\delta \Psi / \delta Q_{0}\right)=\left(\delta U_{1} / \delta Q_{0}\right)-\mu\left(\delta U_{2} / \delta Q_{0}\right)+\xi\left(\delta F / \delta Q_{0}\right)=0$ \qquad
$\left(\delta \Psi / \delta Q^{1}{ }_{1}\right)=\left(\delta U_{1} / \delta Q^{1}{ }_{1}\right)+\xi\left(\delta F / \delta Q_{1}\right)=0$ \qquad (2) [Note that in the PPF, we need not write $\delta Q^{1}{ }_{1}$, as the opportunity cost in terms of sacrificing some Q_{0} in order to produce more Q_{1} (the MRT or marginal rate of transformation) will not change if individual 1 consumes that extra Q_{1} instead of individual 2].
$\left(\delta \Psi / \delta Q^{2}{ }_{1}\right)=-\mu\left(\delta U_{2} / \delta Q^{2}{ }_{1}\right)+\xi\left(\delta F / \delta Q_{1}\right)=0$
From (3), $\mu=\left[\xi\left(\delta F / \delta Q_{1}\right)\right] /\left(\delta U_{2} / \delta Q^{2}{ }_{1}\right)$. Putting this value in (1), we get:
$\left(\delta U_{1} / \delta Q_{0}\right)-\left[\xi\left(\delta F / \delta Q_{1}\right) /\left(\delta U_{2} / \delta Q^{2}{ }_{1}\right)\right] .\left(\delta U_{2} / \delta Q_{0}\right)+\xi\left(\delta F / \delta Q_{0}\right)=0$

Or, $\left[\zeta\left(\delta F / \delta Q_{1}\right) /\left(\delta U_{2} / \delta Q^{2}{ }_{1}\right)\right] .\left(\delta U_{2} / \delta Q_{0}\right)-\left(\delta U_{1} / \delta Q_{0}\right)=\xi\left(\delta F / \delta Q_{0}\right)$
Divide both sides by $\left(\delta U_{1} / \delta Q^{1}{ }_{1}\right)$ to get
$\left[\zeta\left(\delta F / \delta Q_{1}\right) /\left(\delta U_{2} / \delta Q^{2}{ }_{1}\right)\right]\left[\left(\delta U_{2} / \delta Q_{0}\right) /\left(\delta U_{1} / \delta Q_{1}{ }_{1}\right)\right]-\left(\delta U_{1} / \delta Q_{0}\right) /\left(\delta U_{1} / \delta Q_{1}^{1}\right)$
$=\xi\left(\delta F / \delta Q_{0}\right) /\left(\delta U_{1} / \delta Q_{1}{ }_{1}\right)$

Or, $\xi\left[\left(\delta F / \delta Q_{1}\right) /\left(\delta U_{1} / \delta Q_{1}^{1}\right)\right] .\left[\left(\delta U_{2} / \delta Q_{0}\right) /\left(\delta U_{2} / \delta Q^{2}{ }_{1}\right)\right]-\left(\delta U_{1} / \delta Q_{0}\right) /\left(\delta U_{1} / \delta Q^{1}{ }_{1}\right)$
$=\xi\left(\delta F / \delta Q_{0}\right) /\left(\delta U_{1} / \delta Q^{1}{ }_{1}\right)$ \qquad

But from (2), $\xi=-\left(\delta U_{1} / \delta Q_{1}{ }_{1}\right) /\left(\delta F / \delta Q_{1}\right)$. Putting this value in (4), we get:
$-\left(\delta U_{1} / \delta Q^{1}{ }_{1}\right) /\left(\delta F / \delta Q_{1}\right) \cdot\left[\left(\delta F / \delta Q_{1}\right) /\left(\delta U_{1} / \delta Q_{1}^{1}\right)\right] \cdot\left[\left(\delta U_{2} / \delta Q_{0}\right) /\left(\delta U_{2} / \delta Q^{2}{ }_{1}\right)\right]-\left(\delta U_{1} / \delta Q_{0}\right) /\left(\delta U_{1} / \delta Q_{1}^{1}\right)$
$=-\left(\delta U_{1} / \delta Q_{1}{ }_{1}\right) /\left(\delta F / \delta Q_{1}\right) .\left(\delta F / \delta Q_{0}\right) /\left(\delta U_{1} / \delta Q_{1}{ }_{1}\right)$
All the terms in the above expression carry a minus sign. Let us cancel those first. Then we note that the yellow and ash highlighted terms cancel each other out and the crossed ones also cancel each other out. What remains is:

$$
\left[\left(\delta U_{2} / \delta Q_{0}\right) /\left(\delta U_{2} / \delta Q^{2}{ }_{1}\right)\right]+\left[\left(\delta U_{1} / \delta Q_{0}\right) /\left(\delta U_{1} / \delta Q^{1}{ }_{1}\right)\right]=\left[\left(\delta F / \delta Q_{0}\right) /\left(\delta F / \delta Q_{1}\right)\right] .
$$

That is, MRS ${ }^{2}+$ MRS $^{1}=M R T$. This is the famous Samuelson condition for optimal provision of PGs.

We can explain it diagrammatically as well.

In figure 1 (upper panel), we have drawn a PPF and a single U_{2} indifference curve, fixing U_{2} at $\overline{U 2}$. Individual 2 may be placed at any point on this indifference curve subject to the PPF restriction. After he or she is placed at a point, we simply measure the vertical distance between the PPF and that point on the i.c. Say, individual 2 is placed at d, then only $c d$ of the private good is left for individual 1 . He (she), however,
enjoys the same quantity of public good by definition ($O Q^{0}{ }_{o}$ in this case). In this way, varying points like d, we get the consumption possibility curve for person 1 . The optimal allocation is that which gives individual 1 the highest utility (here the curve U_{1}) subject to $\overline{U 2}$ (point d')

