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Bioactive Furans, Pyrroles and Thiophenes
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• Ranitidine (Zantac®, GSK) is one of the biggest selling drugs in history. It is an 
H2-receptor antagonist and lowers stomach acid levels – used to treat stomach ulcers

• Ketorolac (Toradol®, Roche) is an analgesic and anti-inflammatory drug 

• Pyrantel (Banminth®, Phibro) is an anthelminthic agent and is used to treat worms in
livestock
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Drugs Containing a Furan/Thiophene/Pyrrole

2008 Ranking: 14 branded

Disease: Depression

2008 Sales: $2.17 billion

Company: Eli Lilly

Name: Cymbalta

2008 Ranking: 1 branded

Disease: Lowers LDL levels

2008 Sales: $5.88 billion

Company: Pfizer

Name: Lipitor

2008 Ranking: 3 branded

Disease: Stroke and heart attack risk

2008 Sales: $3.80 billion

Company: Bristol-Myers Squibb

Name: Plavix

2008 Ranking: 119 and 149 generic

Disease: Antibiotic for urinary tract infections

2008 Sales: $92 + 72 million

Company: N/A

Name: Nitrofurantoin
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Furans, Pyrroles and Thiophenes – Structure
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• 6 π electrons, planar, aromatic, isoelectronic with cyclopentadienyl anion

• Electron donation into the ring by resonance but inductive electron withdrawal

Structure

Resonance Structures

• O and S are more electronegative than N and so inductive effects dominate
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Furans – Synthesis
Paal Knorr Synthesis

• The reaction is usually reversible and can be used to convert furans into 1,4-diketones   
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• A trace of acid is required – usually TsOH (p-MeC6H4SO3H)
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Furans – Synthesis
Feist-Benary Synthesis (“3+2”)

• Reaction can be tuned by changing the reaction conditions
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• The product prior to dehydration can be isolated under certain circumstances
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Furans – Synthesis
Modified Feist-Benary

• Iodide is a better leaving group than Cl and the carbon becomes more electrophilic
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• The Paal Knorr sequence is followed from the 1,4-diketone onwards

• The regiochemical outcome of the reaction is completely altered by addition of iodide
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Thiophenes – Synthesis
Synthesis of Thiophenes by Paal Knorr type reaction (“4+1”)

• Reaction might occur via the 1,4-bis-thioketone
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Pyrroles – Synthesis
Paal Knorr Synthesis (“4+1”)

• Ammonia or a primary amine can be used to give the pyrrole or N-alkyl pyrrole
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Pyrroles – Synthesis
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Knorr Pyrrole Synthesis (“3+2”)

• Use of a free amino ketone is problematic – dimerisation gives a dihydropyrazine

EtO2C

EtO2C

O NH3   Cl

MeO
NaOH aq.

N
H

EtO2C

MeEtO2C

O
NH2

EtO2C

EtO2C

MeHO

N
H

O Me

EtO2C

EtO2C

via or

• Problem can be overcome by storing amino carbonyl compound in a protected form

• Reactive methylene partner required so that pyrrole formation occurs more rapidly
than dimer formation
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Pyrroles – Synthesis
Liberation of an Amino Ketone in situ by Oxime Reduction 

Preparation of α-Keto Oximes from β-Dicarbonyl Compounds 

Me

EtO2C

O N

MeO

OH

Zn, AcOH

or Na2S2O4 aq.
N
H

Me

MeEtO2C

(sodium dithionite)

OEt

O O

N

OEt

O O

OH

(HNO2)

NaNO2, H

OEt

O O
H

N

OEt

O O

O

H

H2O N O



71

Pyrroles – Synthesis
One-Pot Oxime Reduction and Pyrrole Formation

Hantzsch Synthesis of Pyrroles (“3+2”)
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• A modified version of the Feist-Benary synthesis and using the same starting materials:

an α-halo carbonyl compound and a β-keto ester 
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Furans, Pyrroles Thiophenes –
Electrophilic Substitution

Electrophilic Substitution – Regioselectivity

• Pyrrole > furan > thiophene > benzene
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• Thiophene is the most aromatic in character and undergoes the slowest reaction

• Pyrrole and furan react under very mild conditions

• α-Substitution favoured over β-substitution more resonance forms for intermediate and
so the charge is less localised (also applies to the transition state)

• Some β-substitution usually observed – depends on X and substituents
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Furans – Electrophilic Substitution
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Bromination of Furans 

Nitration of Furans

• Nitration can occur by an addition-elimination process

• When NO2BF4 is used as a nitrating agent, the reaction follows usual mechanism

• Furan reacts vigorously with Br2 or Cl2 at room temp. to give polyhalogenated products

• It is possible to obtain 2-bromofuran by careful control of temperature
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Furans – Electrophilic Substitution
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Friedel-Crafts Acylation of Furan

Mannich Reaction of Furans
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Vilsmeier Formylation of Furan

• Blocking groups at the α positions and high temperatures required to give β acylation
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Thiophenes – Electrophilic Substitution

S

NO2

S NO2

AcONO2

S

Nitration of Thiophenes

Halogenation of Thiophenes

• Reagent AcONO2 generated in situ from c-HNO3 and Ac2O

• Occurs readily at room temperature and even at −30 °C 

• Careful control or reaction conditions is required to ensure mono-bromination
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48% HBr, 48% HBr,
S BrBr  −10 →→→→ 10 °C  −25 →→→→ −5 °C
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Pyrroles – Electrophilic Substitution

Nitration of Pyrroles

• Mild conditions are required (c-HNO3 and c-H2SO4 gives decomposition) 
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Pyrroles – Porphyrin Formation

• The extended aromatic 18 π-electron system is more stable than that having four
isolated aromatic pyrroles
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Porphyrin Natural Products

• Chlorophyll-a is responsible for photosynthesis in plants

• The pigment haem is found in the oxygen carrier haemoglobin

• Both haem and chlorophyll-a are synthesised in cells from porphobilinogen
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Furans, Pyrroles Thiophenes –
Deprotonation

Metallation

Deprotonation of Pyrroles
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• Free pyrroles can undergo N or C deprotonation

• Large cations and polar solvents favour N substitution

• A temporary blocking group on N can be used  to obtain the C-substituted compound



80

Furans, Pyrroles Thiophenes –
Directed Metallation
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Common directing groups: C O2H(Li ), CH2OMe, CONR2, CH(OR)2

Control of Regioselectivity in Deprotonation

Synthesis of α,α’-Disubstituted Systems
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Furans – Synthesis of a Drug
Preparation of Ranitidine (Zantac®) Using a Mannich Reaction
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• Furfural is produced very cheaply from waste vegetable matter and can be reduced to
give the commercially available compound furfuryl alcohol

• The final step involves conjugate addition of the amine to the α,β-unsaturated nitro
compound and then elimination of methane thiol

• The second chain is introduced using a Mannich reaction which allows selective
substitution at the 5-position


