I. Fundamental Interactions in Nature:

There are four types of interactions between particles.

		Relative Strength	Range	Particle Exchanged (Mediators)	Lifetime for decay
a]	Strong Interaction	1	10^{-15} m	Gluon	10^{-23} s
b]	Electromagnetic Interaction	10 ⁻²	00	Photons	10^{-16} s
c]	Weak Interaction	10 ⁻¹³	10^{-18} m	W^+ , W^- , Z^0	10^{-8} s
d]	Gravitational Interaction	10 ⁻³⁸	00	Graviton	-

i) Gravitational Interaction:

- Weakest force
- Force of mutual attraction between masses
- Long range force $\left(\sim \frac{1}{r^2}\right)$
- Mediator is **Gravition** mass less, speed of light, interacts with all particles with mass, spin 2ħ

ii) Electromagnetic Interaction:

- Acts between charged particles
- Responsible for binding of electrons, formation of molecules, electrical and optical signals
- Responsible for all chemical and biological processes
- Tension, Friction, Drag ultimately results from EM interaction
- Responsible for almost all non gravitational forces
- Mediator is **Photon** mass less, spin 1ħ

iii) Weak Interaction:

- Responsible for β decay by nuclei
- Range is smaller than 0.001fm
- The Electroweak theory (1960) unified EM and weak interaction, experimentally proved in 1983
- EM and Weak forces act independently except at high particle energies

• Mediators are $W^{\pm}(80.4 \text{GeV})$ and $Z^{0}(91.2 \text{GeV})$ bosons- spin 1ħ

iv) Strong Interaction:

- Responsible for binding of nucleons in a nucleus
- Strongest of all forces, 100 times stronger than EM interaction
- Keeps protons together against strong electrostatic repulsion
- Short range & non-central
- Main force of reaction and decays of elementary particles
- Charge independent, spin dependent
- Mediator is Gluon- mass less, neutral, spin 1ħ, a quark, can emit and absorb other gluons

II. Classification of Elementary Particles:

The elementary particles are broadly grouped into three families according to spin, mass and type of interaction.

		Spin	Mass	Types of Interactions
1	Massless Bosons	Integer	0	EM/Gravitational
2	Leptons	Half Integer	<207 me	Weak, EM
3	Hadrons-			Strong, Weak, EM, Gravitational
	Mesons	Integer	$< m_p$	
	Baryons	Half Integer	>m _p	

Mass less Bosons:

Name	Rest mass (MeV)	Spin (×ħ)	Charge (×e)	Decay
Photon	0	1	0	stable
\mathbf{W}^+	80.4×10^{3}	1	1	observed
W ⁻	80.4×10^{3}	1	-1	observed
\mathbf{Z}^{0}	91.2×10^{3}	1	0	observed
Gluon	0	1	0	Bound in hadrons

The particles and its anti-particles in lepton and hadron groups are:

Name	Rest mass (MeV)	Mean life (Sec)	Charge Q (×e)	Spin (×ħ)	Lepton no. L	Baryon no. B	Strangeness no. S
Leptons							
$v_e (\overline{v}_e)$	<7×10 ⁻⁶	00	0 (0)	$^{1}/_{2}$	+1 (-1)		
$v_{\mu} \left(\overline{v}_{\mu} \right)$	< 0.17	∞	0 (0)	$^{1}/_{2}$	+1 (-1)		
$v_{\tau} (\overline{v}_{\tau})$	<18	00	0 (0)	$^{1}/_{2}$	+1 (-1)		
e ⁻ (e ⁺)	0.51	00	-1 (+1)	$^{1}/_{2}$	+1 (-1)		
μ (μ+)	105.7	2.2×10 ⁻⁶	-1 (+1)	$^{1}/_{2}$	+1 (-1)		
$\tau^{-}(\tau^{+})$	1777	2.96×10 ⁻¹³	-1 (+1)	$^{1}/_{2}$	+1 (-1)		
Hadrons							
Mesons							
$\pi^+(\pi^-)$	139.6	2.6×10 ⁻⁸	+1 (-1)	0	0		
$\pi^0 (\overline{\pi}_0)$	135.0	0.8×10^{-16}	0	0	0		
$\mathbf{K}^{+}(\mathbf{K}^{-})$	493.7	1.2×10^{-8}	+1 (-1)	0	0		+1 (-1)
$\mathbf{K}^{0}(\overline{\mathbf{K}}^{0})$	497.7	8.8×10 ⁻¹¹	0	0	0		+1 (-1)
$\eta^0 (\overline{\eta}_0)$	547.0	2.5×10 ⁻¹⁹	0	0	0		
ρ, ω, K [*] are	vector meso	ns, spin 1ħ, u	nstable				
Baryons							
p (p)	938.3	00	+1 (-1)	$^{1}/_{2}$		+1 (-1)	0 (0)
n (n)	939.6	888	0 (0)	$^{1}/_{2}$		+1 (-1)	0 (0)
Λ^0 ($\overline{\Lambda}^0$)	1116	2.5×10 ⁻¹⁰	0 (0)	¹ / ₂		+1 (-1)	-1 (+1)
Σ^+ ($\overline{\Sigma}^-$)	1189	8×10 ⁻¹¹	+1 (-1)	$^{1}/_{2}$		+1 (-1)	-1 (+1)
$\Sigma^0 (\overline{\Sigma}^0)$	1193	7.4×10 ⁻²⁰	0 (0)	$^{1}/_{2}$		+1 (-1)	-1 (+1)
$\Sigma^{-}(\overline{\Sigma}^{+})$	1197	1.5×10^{-10}	-1 (+1)	$^{1}/_{2}$		+1 (-1)	-1 (+1)
$\Xi^{-}(\Xi^{+})$	1321	1.6×10^{-10}	-1 (+1)	$^{1}/_{2}$		+1 (-1)	-2 (+2)
$\Xi^0(\overline{\Xi^0})$	1315	2.9×10 ⁻¹⁰	0 (0)	$^{1}/_{2}$		+1 (-1)	-2 (+2)
$\Omega^{-}\left(\Omega^{+} ight)$	1672	8.2×10 ⁻¹¹	-1 (+1)	$^{3}/_{2}$		+1 (-1)	-3 (+3)
Σ^*, Δ are spin 3/2 baryons							

Leptons:

- Interact via weak nuclear force
- Charge carrying leptons also interact via EM force
- There are six leptons plus their anti-particles
- All leptons have lepton no. 1 and antiparticles have lepton no. -1.
- All leptons have spin half
- Each charged particle has an associated neutrino similarly named
- Neutrinos are charge less, mass less and identified experimentally.
- Tau lepton, discovered in 1976 is 3000 times heavier than electron lepton
- The existence of weak interaction is necessary in order to explain how a neutrino interacts with the nuclear matter. A neutrino is mass less and charge less, thus, it can't undergo e-m & gravitational interaction. Also as it is not nuclear, it does not participate in strong interaction.

Example: $n \rightarrow p + e^- + \bar{\nu}_e$

The emission of neutrino is necessary to conserve lepton number.

Hadrons:

- ▶ Hadrons are particles that interact via strong nuclear force
- > They also interact via other forces
- Hadrons are divided into two sub-groups- Mesons and Baryons
- Mesons are Bosons (integer spin), Baryons are Fermions (half integer spin)

Mesons:

- Strong interaction
- Bosons with integer spin
- Masses are greater than muon mass, fairly short lifetime

Baryons:

- Strong interaction
- Fermions with half integer spin
- All baryons have baryon no. 1 and antiparticles have baryon no. -1.
- Masses at least as large as the proton mass
- Proton and Neutrons are called Nucleons and have strangeness number 0.
- Baryons with non-zero strangeness number are called Hyperons.